• Title/Summary/Keyword: sandy texture

Search Result 259, Processing Time 0.028 seconds

Consumers' Attitude on Textile for Quick Response based Mass-Customization in Marketing Channels (Quick Response 기반의 Moss-Customization 구현을 위한 점포유형에 관한 소비자 태도 연구)

  • 신상무;이효정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1527-1576
    • /
    • 2002
  • Quick Response based Mass-Customization can be produced and distributed customized goods and services on mass basis in apparel e-business. Because consumers can: t touch and feel the apparel products in e-business, they tend to have the negative buying behavior. The purpose of this study is to investigate the differences of consumer's texture sensibility of apparel products based on marketing channels (on-line/off-line). Two types of questionnaires for on-line and of f-line were used to assess consumer sensibility on apparel fabric. The 8 swatches were selected in regard to the previous literatures. 205 questionnaires for each type (on-line/off-line) were distributed. Statistical devices were t-test, mean and standard deviation with SPSS10.0. The result of this study was showed that there were partially significant differences on consumers' texture sensibility on apparel products between on-line and off-line. Under on-line environment, consumers perceived corduroy as warm, strong, and sandy. taffeta as warm, sandy, and glossy, denim as sandy, and warm, organza as sandy, and thin, satin as sandy, dense, and modern, chiffon as sandy, and flat, velvet as warm, and soft, single jersey as warm, soft, and comfortable. Therefore, apparel firms cooperating based Mass-Customization in e-business have to pay attention to the differences on consumers’ texture sensibility of on-line apparel products from those of off-line.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Effects of Soil Texture on Tuber Characteristics and Yield in Dioscorea opposita Thunb (토성에 따른 마 괴경의 특성과 수량)

  • Park, Sang-Gu;Kang, Dong-Kyoon;Kim, Young-Hyo;Chung, Sang-Hwan;Choi, Boo-Sull
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • This experiment was conducted to investigate the effects of soil texture on agronomic characteristics and tuber yield in chinese yam (Dioscorea opposita Thunb). Tuber length and weight was greater and tuber shape was much better in sandy loam and loam soil than in sandy or clay loam soil. In loam and sandy loam soil, fresh tuber yield was increased by $21{\sim}27%$ in short-tuber type and 6% in long-tuber type, and large tubers yield (above 260g) was increased by $45{\sim}55%$ in short-tuber type and $20{\sim}22%$ in long-tuber type compared to those in sandy soil. There was no differences in large tuber yield at the 5% level of significance between loam and sandy loam soil. Malformation of tuber with bifurcation was extremely increased in sandy soil, and tuber diameter of long-tuber type was decreased in clay loam soil compared to those of the other soil texture.

  • PDF

Effects of Cultural Soil Texture on Growth and Quality of Glycyrrhiza uralensis Fischer (감초 생육 및 품질에 미치는 재배 토성의 영향)

  • Nam, Sang Young;Kim, In Jae;Choi, Seong Yel;Kim, Min Ja;Kim, Young Ho;Song, In Gyu;Lee, Guang Jae;Park, Jae Ho;Kim, Tae Jung
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.531-536
    • /
    • 2011
  • This study was conducted to investigate the effects of cultural soil textures on growth and quality of Glycyrrhiza uralensis Fischer from 2009 to 2010. The obtained results from this study were summarized as follows; The growth of stem and leaf were superior to one year old G. uralensis, and surface runner and root growth tended to be better in 2 years old G. uralensis. The weight of stem and leaf were heavy in sandy loam, and plant height, branches, stem diameter in sandy clay loam were better than other soil texture. The growth characteristics, such as length, number and weight of surface runner, was better in order of sandy clay loam > sandy loam > loamy sand. The length of main and lateral root was longer in loamy sand soil than other treatments, and the diameter of main and lateral root was more thicker in sandy loam than others. The number of lateral root was higher in the sandy loam than other treatments. The yield of main and lateral root was in order of sandy loam > sandy clay loam > loamy sand soil. Marketable root yield of one year old and two year old G. uralensis were increased 57% and 71% in sandy loam compare to a loamy sand as 204 kg/10 a, respectively. The content of glycyrrhizinic acid was the hightest as 1.62% in sandy clay loam soil in one year old, and as 1.58% in sandy loam soil in two years old of G. uralensis, respectively.

Effect of Soil Moisture and Texture on Saikosaponins Content and Antioxidative Enzyme Activities in Bupleurum falcatum L. (재배토양의 수분 및 토성이 시호의 생육상황 및 항산화효소 활성에 미치는 영향)

  • 정형진;신동현;이인중;권순태;임종국;유정민;정규영;김길웅
    • Korean Journal of Plant Resources
    • /
    • v.13 no.2
    • /
    • pp.95-103
    • /
    • 2000
  • To study the effects of soil moisture and texture on characteristics of growth, content of saikosaponins and activity of antioxidative enzymes in Bupleurum falcatum L., content of saikosaponins(a, c and d) and activities of superoxide dismutase(SOD) and peroxidase(POD) were investigated with two Bupleurum genotypes(Jangsoo and Samdo). Two Bupleurum genotypes were grown under different soil moisture(deficit, normal, surplus) and soil texture(sandy, sandy loam, loam) conditions. Among the tested soil conditions, dry weight accumulation rate of both cultivars could be ranked in the order surplus > normal > deficit soil for soil moisture and sandy > sandy loam > loam for soil texture. Under the surplus soil condition, growth retardation of Samdo cultivar was more severer than that of Jangsoo. Furthermore, content of saikosaponin a, d, and c also could be ranked in the order deficit > normal > surplus and sandy > sandy loam > loam for soil moisture and texture, respectively. Although both Jangsoo and Samdo cultivars grown under water deficit condition showed the highest POD and SOD activity, in general POD and SOD activity in both shoot and root was remarkably high in Jangsoo cultivar compared with Samdo. Saikosaponin content of root was positively correlated with POD and SOD. However, shoot and root length were negatively correlated with POD.

  • PDF

Determination of moisture threshold for solution sampling in different soil texture (토양용액 채취를 위한 토성별 한계수분함량 설정)

  • Lee, Chang Hoon;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Kang, Seong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

Effects of Soil Texture and Bulk Density on the Least-Limiting Water Range (토성(土性)과 용적밀도(容積密度)가 최소생육제한수분범위(最小生育制限水分範圍)에 미치는 영향(影響))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 1997
  • Three soils, sandy loam, loam and silty clay loam, were selected and three inches soil cores with 4 bulk density(BD) levels were made by compressing the soils wetted with 3 levels water. Mechanical and water characteristics were measured and analyzed the mechanical resistance limiting water, available water and least-limiting water range. Mechanical resistance limiting water(MRLW) were appeared at higher bulk density than $1.6Mg/m^3$ in sandy loam, and $1.4Mg/m^3$ in loam and silty clay loam. The least-limiting water ranges were sharply decreased at the bulk density $1.6Mg/m^3$ in sandy loam and loam, $1.4Mg/m^3$ in silty clay loam. There were big deferences between available water contents and least limiting water ranges in finer texture and higher bulk density soils.

  • PDF

Effect of Soil Texture on Rice Growth and Paddy Soil Percolation under Lysimeter Condition (라이시미터 조건에서 토성이 벼의 생육 및 논토양의 지하삼투수량에 미치는 영향)

  • Chae, Je-Cheon;Kim, Sung-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.236-240
    • /
    • 2001
  • The lysimeter experiment was conducted to investigate the temporal changes of irrigation requirement, soil water percolation and rice root distribution during rice growing period under different soil texture that were sandy loam, clay loam and clay paddy soil in 1999 and 2000. The irrigation requirement in the first year was 3,306 l/$m^2$ in clay loam, 2,650 l/$m^2$ in sandy loam and 2,002 l/$m^2$ in clay soil. However, the highest irrigation requirement was 5,281 l/$m^2$ in sandy loam and the next was 4,984 l/$m^2$ in clay loam and 3,968 l/$m^2$ in clay soil in the second year, Soil water percolation in the first year was 2,141 l/$m^2$ in clay loam, 1,228 l/$m^2$ in Sandy loam and 862 l/$m^2$ in clay soil. However, in the second year, the highest water percolation of 4,448 l/$m^2$ was measured in sandy loam, and was followed by 3,833 l/$m^2$ in clay loam and 2,925 l/$m^2$ in clay soil. Distribution ratio of rice roots measured in 0-10cm of soil depth was 56.0% in sandy loam, 61.4% in clay loam and 72.1% in clay soil, respectively. It was interpreted that the greater water percolation measured in the second year was caused mainly by the large amount of rice root growth. Therefore, it was concluded that the soil water percolation in rice paddy soil was affected greatly not only by soil texture but also the growth of rice root.

  • PDF