• 제목/요약/키워드: sandy loam

Search Result 625, Processing Time 0.032 seconds

Effects of Nitrogen Fertilization Increment on Forage Crops Cultivation in Saemangum Reclaimed Land (새만금간척지 사료작물 재배시 질소증비 효과)

  • Yang, Chang-Hyu;Kim, Sun;Lee, Jang-Hee;Baek, Nam-Hyun;Kim, Taek-Kyum;Choi, Weon-Young;Jeong, Jae-Hyuk;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.235-240
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were two treatments of nitrogen fertilization 20% increment based on the standard fertilization of 150, $200kg\;ha^{-1}$. Whole crop barley as the winter crop sowed on 27 October. After the whole crop barley was harvested at the end of May. Corn and sorghum${\times}$sudangrass as the summer crop sowed at the early of June successively on the same field. Emergence rate the whole crop barley was high while the summer crops were low. Soil salinity was increased during cultivation of summer crops. However, corn and sorghum${\times}$sudangrass were not damaged by salt. Increase of nitrogen fertilization made the growth of cultivation crops good, stem and leaf tended to have a lot of the mineral nutrients at heading stage and silking stage. After experiment, among soil chemical properties pH, content of exchangeable sodium were decreased and content of organic matter, available phosphate were increased. Dry matter yield were showed whole crop barley $13,170kg\;ha^{-1}$ and sorghum${\times}$sudangrass $19,440kg\;ha^{-1}$ by increment of nitrogen fertilization. Therefore, to improve the product and nutrient balance of reclaimed saline land comprehensive soil management should be considered.

Effects of Ridge Width on Growth and Yield of Proso Millet (Panicum miliaceum L.) in Paddy-Upland Rotation Field (답전윤환지에서 이랑너비에 따른 기장의 생육특성 및 수량)

  • Yoon, Dong-Kyung;Oh, Seung-Ka;Lee, Byung-Jin;Chun, Hyun-Sik;Jung, Ki-Youl;Kang, Hang-Won;Jeon, Seung-Ho;Cho, Young-Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • This study was conducted to serve as a basis for establishing a stable production of proso millet on the rotational paddy-upland field by looking out the physicochemical and moisture characteristics of soil and the growth characteristics of proso millet by ridge width. Plant height showed Manhongchal was the smallest 71.3 cm in 240 cm wide of ridge in the first year, Ibeakchal was the highest 69.7 cm in 60 cm wide in the second year, Hwanggeumchal was the highest 72.8 cm in 60 cm wide in the first year. The retention time of the excess water in the soil during cultivation was extended wider the width of ridge. The variation width of the water content was higher by the wider the width of ridge. Yield components showed the longest ear length were 35.1 cm of Manhongchal, 34.8 cm of Ibeakchal in 60 cm wide of ridge in the first year. As the width of ridge extended, ear weight of all variety increased. 1,000 seed weight of the 60 cm wide of ridge was Manhongchal 6.8%, Ibeakchal 46.2% heavier than the 240 cm wide of ridge. Yield showed Manhongchal 221, Ibeakchal 223, Hwanggeumchal $225kg{\cdot}10a^{-1}$ in 60 cm wide of ridge in the first year. The similar pattern of amount showed Manhongchal 278, Ibeakchal 221, Hwanggeumchal $200kg{\cdot}10a^{-1}$ in 60 cm wide of ridge in the second year. This showed Manhongchal 103%, Ibeakchal 119%, Hwanggeumchal 85.2% was more than the 240 cm wide of ridge.

Soil Microbial Flora and Chemical Properties as Influenced by the Application of Pig Manure Compost (돈분퇴비의 시용이 배추재배지 토양의 미생물상 및 화학성에 미치는 영향)

  • Weon, Hang-Yeon;Kwon, Jang-Sik;Suh, Jang-Sun;Choi, Woo-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.76-83
    • /
    • 1999
  • Studies were conducted during 2 months from May of 1997 to evaluate the effects of pig manure compost(PMC) on soil microbial flora. To do so, a field experiment of Chinese cabbage(Brassica campestris L.) was conducted in a randomized block design on a sandy loam soil and microbial floral characteristics in soils were analyzed. Treatments to control included the application of PMC at (A) $8Mg\;ha^{-1}$CM-8), (B) $29Mg\;ha^{-1}$(CM-2,9), and (C) $57Mg\;ha^{-1}$(CM-57), and of chemical fertilizer(D) at $320N-80P_2O_5-200K_2O\;kg\;ha^{-1}$(NPK). In each treatment, the rhizosphere and non-rhizosphere soils were tested for the analysis of microbial populations. The populations of bacteria, actinomycetes, and fungi increased in soils with the applications of PMC and chemical fertilizer, but that of Bacillus sp. decreased. However, the population of fluorescent Pseudomonas sp. was reduced in NPK plots only. With increasing application rates of PMC, the number of colony forming units(cfu) of bacteria (Pseudomonas sp. and actinomycetes) and fungi increased. in all PMC-treated plots, the population density peaked at early growth stage for bacteria(including Bacillus sp.), at late growth for fluorscent Pseudomonas sp., and at harvest for fungi and actinomycetes. The rhizosphere effect was greatest for fluorscent Pseudomonas sp. As the application rates of PMC increased, Total N, organic matter, available phosphate, and exchangeable -K, -Ca, and -Mg increased compared to control, but soil pH was lowered. In NPK plots, EC was 3.4-fold and exchangeable K was 5-fold higher than control.

  • PDF

The Influence of Pesticides on Some Chemical and Microbiological Properties Related to Soil Fertility II. Effects of CNP Herbicide on Soil Microflora (농약제(農藥劑)의 시용(施用)이 토양(土壤)의 비옥성(肥沃性) 및 미생물상(微生物相)에 미치는 영향(影響) II. CNP 제초제시용(除草劑施用)이 토양미생물(土壤微生物) flora에 미치는 효과(效果))

  • Ryu, Jin-Chang;Araragi, Michio;Koga, Hiroshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 1984
  • This experiment was conducted to find out the changes in microflora of submerged soil uncultivated rice plant by application of CNP herbicide (2, 4, 6 - Trichlorophenyl-4-Nitrophenyl ether) under conditions applied with compost, rice straw, glucose or without organic material. The soil, sandy loam textured was incubated in green house for 66 days. Sampling and analysis of microorganisms were carried out during submergence periods. The results were summarilized as follows. 1. Number of aerobic total bacteria was increased by application of CNP herbicide during submerbed 50 days, afterthen, could not seen the difference. The application of rice straw increased number of aerobic bacteria regardless of CNP herbicide application or not, but glucose tended to decrease. 2. Number of Fungi was constantly maintained at $8-20{\times}10^3$ levels during period of submergence regardless of application of CNP herbicide and organic materials or not. 3. The CNP herbicide application tended to decrease the number of actinomycetes, particularly, in the treatments without organic substances and rice straw were remarkably decreased. 4. Anaerobic-and gram-negative bacteria populations were not showed any difference by application of herbicide and organic materials. 5. The ratios of aerobic bacteria to fungi and aerobic bacteria to actinomycetes appeared high values by application of herbicide and of organic substances. 6. At 66 days after submergence, the ratio of chromogenic actinomycetes to the total number of actinomycetes was lowered in application of herbicide. On the other hand, the percentage of both pretense-positive and cellulase-positive actinomycetes to the total isolates were higher in the treatment with herbicide than An without herbicide, particularly. The ratios of pretense-positive actinomycetes were high in the rice straw application regardless of herbicide application or not, but cellulase-positive actinomycetes was not remarkably difference.

  • PDF

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Effects of Simulated Acid Rain on the Growth of Pinus rigida × taeda Seedlings Inoculated with Ectomycorrhizal Fungi, Pisolithus tinctorius and Suillus luteus (인공산성우(人工酸性雨)가 모래밭버섯과 비단그물버섯 균근균(菌根菌)으로 접종(接種)한 리기테다소나무 묘목(苗木)의 생장(生長)에 미치는 효과(效果))

  • Ko, Min Gyoo;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.4
    • /
    • pp.453-459
    • /
    • 1988
  • The purposes of this study were to evaluate the effects of acid rain on tree growth and on the mycorrhizal formation and the effects of mycorrhizae on the host tolerance to acid rain. Simulated acid rain was applied for five months to Pinus $rigida{\times}taeda$ seedlings in pots inoculated with Pisolithus tinctorius (Pt) and Suillus luteus (Sl). Mycelial inocula of Pt and Sl were either mixed with entire pot soil (Mix) or casted as a band (Band) after soil sterilization. Three pH levels of acid rain (pH 3.0, 4.5 and 6.4 adjusted by 3 : 1 mixture of sulfuric and nitric acids) were tested. Pt-Mix was most effective in growth stimulation and resulted in 45-90% increase in tree height in sandy loam. Pt-Band was less effective than Pt-Mix in growth stimulation and mycorrhizal formation. Simulated acid rain at pH 4.5 stimulated height growth by 10-55%, while acid rain at pH 3.0 did not significantly affect the height growth. The top/root ratio was increased by pH 4.5 treatment, while pH 3.0 treatment reduced it. Mycorrhizal infection rate was not affected by acid rain. Pt inoculation reduced acid-induced leaf injury by 28-58% in both pH 3.0 and 4.5 compared with un-inoculated plants. Sl was also effective in growth enhancement, but was less effective than Pt in both mycorrhizal infection and reducing leaf injury.

  • PDF

Effect of Nitrogen and Potassium Fertigation Concentrations on the Growth and Yield of Cut-flower Rose (Rosa hybrida L.) (절화장미의 생육 및 수량에 미치는 질소와 칼리의 관비농도)

  • Lim, Jae-Hyun;Lee, In-Bog;Park, Jin-Myeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.413-420
    • /
    • 2001
  • To prevent salt accumulation in cut-flower rose soil through proper nutrient management, the optimum concentration of nitrogen and potassium for fertigation was investigated. For the purpose, 'Noblesse' cut-flower roses was transplanted to a sandy loam soil in a plastic house and four nutrient levels (0, 25, 50 and $100mg\;l^{-1}$) of N and K separately were applied by drip-irrigation under -20 kPa of soil moisture tension. The growth and yield responses were assessed in terms of the length, weight and number of cut-flower roses, and the nutrient availability absorbed by plant. The length of cut-flowers was not affected by N concentration, but the weight and number of cut-flowers were greatest at $50mg\;N\;l^{-1}$. For K, the length and weight of cut-flowers were greatest at 25 and $50mg\;l^{-1}$, but the number of cut-flowers were remarkably great at $50mg\;l^{-1}$. Despite of increase of N and K fertigation concentration ranged from 25 to $100mg\;l^{-1}$, there was not significant difference between the uptake concentration of plant parts. As a result, the availability of N and K in $50mg\;l^{-1}$ fertigation was highest when compared to other fertigation concentrations, while the remaining amounts of N and K to soil was very low. The results of this study suggested that N and K concentrations of $50mg\;l^{-1}$ would be adequate for the fertigation of 'Noblesse' cut-flower rose.

  • PDF

Changes in Evapotranspiration and Soil Water Status to Vinyl mulching (Vinyl mulching에 의(依)한 증발산량(蒸發散量) 및 토양수분(土壤水分) 변화(變化)에 관(關)한 연구(硏究))

  • Eom, Ki-Cheol;Son, Eung-Ryong;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 1990
  • Changes in soil water potential and soil water content, evapotranspiration and water use efficiency during red-pepper cultivation were investigated under different mulching conditions(Non-mulching, Transparent vinyl and Black vinyl mulching) in a sandy loam soil for 1982 & 1983. The soil water potential up to 20cm depth for transparent vinyl mulching were higher than those of non-mulching condition until the rain free days lasted 25 days, and more than 6 weeks for black vinyl mulching. Root zone water content up to 10cm, 20cm, 30cm, and 50cm for transparent vinyl mulching were lower than those of non-mulching condition after the rain free days lasted more than 2weeks, 3weeks, 5weeks and 6weeks, respectivery. Soil water depletion of deep soil depth were more than that of surface zone for transparent vinyl mulching as the rain free days continued, whereas there was no difference to soil depth for non-mulching condition. Evapotranspiration rates under transparent vinyl mulching condition were higher in dry season but lower in wet season than those of non-mulching condition. Total evapotranspiration during growing season of mulching with transparent or black vinyl was not siginficantly different from that of non-mulching condition, whereas water use efficiency was increased by vinyl mulching with not only whole mulching but also top mulching.

  • PDF

Movement of Applied Nutrients through Soils by Irrigation -III. Effect of Soil Water on the Movement of Nitrogen (관수(灌水)에 의(依)한 시비양분(施肥養分)의 토양중(土壤中) 이동(移動)에 관(關)한 연구(硏究) -III. 토양수분(土壤水分) 조건(條件)에 따른 질소(窒素)의 이동(移動))

  • Ryu, Kwan-Shig;Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.232-237
    • /
    • 1994
  • Field microplot(D 20cm, 1 85cm) experiment filled with Bonryang sandy loam soil(Typic Udifluvents) was conducted to obtain quantitative information on the movement of applied nitrogen under different soil moisture regimes and ladino clover cultivation. Urea applied to the soil was quickly transformed into $NH_4$-N which was slowly to $NO_3$-N which governed the downward movement of inorganic N applied in the soil. Downward movement of inorganic nitrogen was relatively slow in the early growing stages of ladino clover when $NH_4$-N form was the major inorganic nitrogen in the soil. In the later growing stages when $NO_3$-N was the major form, inorganic nitrogen moved rapidly with soil water. Favorable soil moisture condition increased downward movement and plant uptake of inorganic nitrogen. In the non irrigated bare soil 92% of applied nitrogen was leached downwards out of the microplots at the final harvest. Under the non-irrigated condition 57% of applied nitrogen was taken up by plants and 37% of nitrogen remained in the soil 5.5 months after sowing. Nitrogen uptake by plants in the microplots irrigated at 0.2 bar was 4.03g/microplot at the final harvest, which was more than the amount of nitrogen applied.

  • PDF

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.