• 제목/요약/키워드: sandy loam

검색결과 624건 처리시간 0.024초

인공산성비 처리가 토양의 무기양분 이동에 미치는 영향 (Effects of Simulated Acid Rain on Mineral Nutrient Movement in Soil)

  • 유관식
    • 한국환경농학회지
    • /
    • 제17권4호
    • /
    • pp.362-367
    • /
    • 1998
  • 사양토, 양토, 식양토의 3가지의 토양을 2' column에 충진한 후 인공 산성비( pH 2.0, 4.0, 6.0) 1200㎜를 처리하여 산성비의 토양내 침투수량에 따른 토양 중 무기양분의 이동 양상과 토양내에서의 환경변화에 대한 시험 결과, 산성비의 토양침투에 따른 토양의 pH 변화는 산성비의 pH가 4.0가 6.0에서는 별 차이가 없었으나 pH2.0에서는 토심별로 큰 차이를 보였으며, pH감소는 사양토> 양토> 식양토 순위였다. 산성비의 토양침투에 따른 토양의 토심별 치환성과 수용성 염기의 용탈양은 Ca> Mg> K 순위였으며, 산성비의 pH2.0에서 가장 많은 양이 이동하였다. 이들 염기들의 평균이동거리를 pH2.0의 산성비 처리에서는 사양토, 양토, 식양토 공히 Mg> Ca> K의 순위였으나, 산성비의 pH4.0인 경우 사양토와 식양토는 Mg> K> Ca, 양토의 경우는 K> Mg> Ca의 순위였다. 인산의 경우 평균 이동거리는 다른 성분에 비하여 매우 짧았으며 산성비의 산도가 증가할수록 증가하였고, 일반 강우 조건에서는 거의 이동하지 않았다.

  • PDF

토양과 수위 및 차광의 차이가 창포(Acorus calamus var. angustatus)의 생육에 미치는 영향 (Effects of Soil, Water Level and Shading on Growth of Acorus calamus var. angustatus)

  • 신승훈;김민수;김윤하
    • 한국조경학회지
    • /
    • 제32권5호
    • /
    • pp.63-72
    • /
    • 2004
  • This study was carried out to analyze effects of soil, water level and shading on growth of sweet flag(Acorus calamus var. angustatus). Three types of soil were used, which included sandy, silty loam and paddy loam soil. Three levels of shading were applied in the experiment: no shading, 55% shading and 75% shading. The water levels were also adjusted to three levels in the experiment. The results are summarized as follows; 1. The cultivation of sweet flag in sandy soil with low water level resulted in decreased fresh weight compared to that at planting. This result indicates that the water level should be maintained higher than the soil surface for sweet flag growth in sandy soil. 2. 5 out of 72 sweet flags died in paddy loam soil. Water saturation of soil easily reduced paddy loam soil, and root growth of sweet flags in reduced soil condition were restricted, resulting in the dead plants. 3. The growth of sweet flag in paddy loam soil was worse than those in silty loam, indicating that reduced soil conditions in paddy loam is harmful to root growth. In planting sweet flags in paddy loam, improved soil aeration in paddy loam soil is necessary for good growth of sweet flag. 4. The maintaining of high water levels is better than that of low water levels in sweet flag cultivation. During winter, soil near the water surface froze and sweet flags in frozen soil were stressed physiologically. Maintaining high water levels prevents soil from being frozen which is good for the growth of sweet flags. 5. There was not significant difference in the growth of the sweet flag between non-shading and 55% shading. It thus appears that sweet flags can grow soundly under shading rate lower than 55%.

농용 트랙터용 접촉식 지상고 측정 센서 개발 (Development of a Contact Type Height Sensor to Measure Ground Clearance of an Agricultural Tractor)

  • 이충호;이제용;이상식
    • Journal of Biosystems Engineering
    • /
    • 제33권1호
    • /
    • pp.7-13
    • /
    • 2008
  • The tillage depth control system is one of the most salient control system of tractor implements. A contact-type height sensor was developed to measure ground clearance for the tillage depth control. The height sensor was fabricated in this study, and its efficacy in a tillage depth control system was evaluated. Experiments were conducted in order to determine both static and dynamic detection characteristics of the height sensor using soil bin system on the sampled soil (sandy loam, sand, clay loam). The results of the static detection characteristics showed that in the case, sandy loam soil despite and clay loam soil at a wet basis moisture content of 30%, large measurement errors were observed a due to penetration of a plastic puck into the sampled soil. The results of the dynamic detection characteristics showed that the height sensor detected the distance from the ground of sandy loam soil despite the uneven nature of the ground surface and the changes in traveling speed $1km/h{\sim}5km/h$ at a wet basis moisture content of 10%.

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

경사지 밭토양에서 강우량과 토성에 따른 물 유출 양상 및 수관피복인자 구명 (Characteristics of Soil Water Runoff and Canopy Cover Subfactor in Sloped Land with Different Soil Texture)

  • 이현행;하상건;허승오;정강호;박찬원;김계훈
    • 한국토양비료학회지
    • /
    • 제40권2호
    • /
    • pp.131-135
    • /
    • 2007
  • 우리나라 밭토양은 70% 이상이 경사지에 위치하고 있기 때문에 침식에 의한 토양유실이 매우 심각한 실정이다. 따라서 본 연구에서는 토성 간 강우량 및 강우강도에 따른 토양유실량과 유출수량을 비교함으로써 토성 및 강우형태에 따른 물흐름 양상을 파악하고, RUSLE (Revised universal soil loss equation)에서 수관피복인자(Canopy cover subfactor)를 산출하여 토양유실을 방지하는데 이용하고자 하였다. 시험은 2005년 5월부터 10월까지 고추, 배추, 감자, 콩이 식재되고 15%의 경사도를 가진 라이시미터에서 실시되었고 강 우량과 강우강도, 토양 유실량과 유출수량, 강우량과 토성에 따라 유출량과의 관계를 보았다. 강우량에 따른 유출수량은 모두 강우량이 증가함에 따라 증가하는 정의 관계를 보였으나 토성에 따라 강우량이 증가함에 따른 유출수의 상대적인 증가비율은 다소 다른 경향을 나타내었다. 고추가 식재된 상태에서 토성별 강우량 단위 증가에 따른 유출수의 증가비율은 양토에서 0.44로 가장 높았고 식양토, 사양토는 0.41 mm, 0.13 mm 이었다. 유출발생 최소강우량도 사양토가 23.53 mm로 가장 높았으며 양토는 10.35 mm, 식양토는 5.46 mm 순으로 나타내었다. 고추의 수관피복인자는 사양토에서 0.425, 양토는 0.459, 식양토는 0.478를 나타내었다. 본 연구 결과 산출된 토성별 강우량에 따른 유출수량과 수관피복인자는 토양 유실량을 평가하여 저감 대책을 마련하는데 도움이 되리라 판단된다.

밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우- (Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish-)

  • 김철기;김진한;정하우;최홍규;권영현
    • 한국농공학회지
    • /
    • 제32권1호
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

객토시 토성이 시설참외의 생육과 품질에 미치는 영향 (Effects of Soil Textures by Soil Addition on the Growth and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) under Protected Cultivation)

  • 배수곤;연일권;박소득;강찬구
    • 생물환경조절학회지
    • /
    • 제13권3호
    • /
    • pp.156-161
    • /
    • 2004
  • 시설참외 재배지 연작장해 경감을 위한 객토시 토성이 생육과 과실의 품질 및 수량에 미치는 영향을 조사하였다. 객토시 기존 작토층에 함유된 유ㆍ무기물질들은 교반으로 감소되었고, 토양수분 장력은 점토함량이 낮은 사양토가 양토와 미사질식토 보다 감소폭이 크게 나타났으나 토양경도의 증가폭은 낮았다. 초기 생육은 사양토에서 초장과 엽면적 그리고 지상ㆍ지하부 생체중과 건물중이 모두 높은 경향을 보였으나 엽록소함량은 낮았다. 과실은 사양토에서 크고 무거웠으며 단도와 색은 미사질식토에서 높게 나타났다. 상품과와 비상품과 수량은 사양토에서 가장 많았으며 또한 발효과 발생률도 높게 나타났다. 저장기간이 경과할수록 모든 토성에서 경도와 과중은 서서히 감소되었으나 당도는 저장 후 5일까지 증가한 후 감소되었다. 따라서 시설참외 재배지 객토시 과실의 품질과 수량에 영향을 미치는 토성이 고려되어야 하겠다.

재배토양의 수분 및 토성이 시호의 생육상황 및 항산화효소 활성에 미치는 영향 (Effect of Soil Moisture and Texture on Saikosaponins Content and Antioxidative Enzyme Activities in Bupleurum falcatum L.)

  • 정형진;신동현;이인중;권순태;임종국;유정민;정규영;김길웅
    • 한국자원식물학회지
    • /
    • 제13권2호
    • /
    • pp.95-103
    • /
    • 2000
  • 토성 및 토양수분에 따른 시호근의 생육특성과 saikosaponin함량 및 항산화효소 활성 변화를 조사해 본 결과, 수분과다 토양에서 는 삼도시 호는 장수시호보다 생육 억제정도가 매우 높았고, 건물중은 과습, 적습, 과건 재배 순으로 높았고, 수분조건에 따른 토성별로는 과건은 식양토, 사양토, 사토 순으로, 적습과 과습시는 사토, 사양토, 식양토 순으로 높았다. 토양수분조건별 saikosapon a, d, c함량은 과건, 적습, 과습 순으로 높았고, 토성간에는 사토, 사양토, 식양토 순으로 높았다. POD 활성은 지상부는 장수시호가 삼도에 비하여 매우 높았고, 토양 수분함량간에는 장수는 과건, 과습, 적습 조건 순으로 높았으나, 삼도시 호는 과건, 적습, 과습 순으로 높았다. SOD활성은 지상부와 지하부 공히 장수시호가 높은 경향이나, 수분조건별로는 과건, 과습, 적습순으로 높았으며, 건조상태의 경우 두 품종 모두 사토에서 높았다. 시호에서 뿌리의 Saikosaponin함량과 POD 및 SOD 함량과는 정의상관을 나타내는 경향이었고 줄기 및 뿌리길이와 POD함량과는 부의 상관을 나타내었다.

  • PDF

써레질 용수에 관한 포장실험 (Field experiment on the harrow-water requirement)

  • 김태철;안병기
    • 한국농공학회지
    • /
    • 제27권1호
    • /
    • pp.71-76
    • /
    • 1985
  • The objectives of this field experiment was to determine and recommend the water requirement for harrow considering the factors of soil class and soil moisture status. Experiment was conducted at the -paddy field of the Office of Rural Development in Chungnam Province. The results of experiment were summarized as follows: 1. Continuous drought day of 10-yr return period in transplanting season was about 25 days and the water content ratios at that point were approximately 20% in clayey-loam soil and 12% in sandy-loam soil irrelevantly to the soil-depth. 2. It was recommended that harrow-water requirement for standard design were approximately 9Omm in clayey-loam soil, 110mm in loamy soil and l3Omm in sandy-loam soil.

  • PDF

써레질 용수량과 지배요인에 관한 시험연구 (Experimental Study on the Harrow Water Reguirement and the Factors Influenced on It in the Paddy Field)

  • 권영현;윤정목;김철기;한찬택
    • 한국농공학회지
    • /
    • 제31권4호
    • /
    • pp.90-95
    • /
    • 1989
  • The purpose of this study is to seek out the harrow water requirement applicable for the irrigation plan of paddy field and to find out the factors influenced on a variation in the requirement. The plots of experiment were arranged with randomized block design which was compo- sed of three kinds of soil texture (sandy loam, loam and silty loam) and ploughing depth (12cm, 17cm, and 22cm). The results obtained from this experimental study are summarized as follows. 1. Harrow water reguirement is not only changed by soil texture, but influenced by soil water content just before irrigating 2. Magnitude of total harrow water reguirement appli(able for the irrigation plan, when surface water depth and the water content just before irrigating is fixed on the basis of 30 mm and a shrinkage limit respectively, generally becomes to be 177.5mm, 116.3mm and 113. 8mm in the sandy loam, loam amd silty loam block, respectively. 3. The more a percolation of soil layer occurs, the more the harrow water requirement increases, but it is not much influenced by the increase in ploughing depth. 4. The larger a porosity of soil layer is, the more a net harrow requirement increases 5. The factors that influence on a variation in the harrow water requirement are appea- red to be percolation of soil layer, soil water content just before irrigating, porosity of soil layer, ploughing depth and designed surface water depth etc.

  • PDF