• Title/Summary/Keyword: sandy loam

Search Result 625, Processing Time 0.025 seconds

Assessment of the Amount of Irrigation Water for Red Pepper by Water Saving Irrigation Manual (노지재배 고추재배시 물절약형 관개 기준에 의한 물절약량 산정 연구)

  • Eom, Ki-Cheol;Park, So-Hyun;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.301-305
    • /
    • 2012
  • The amount of irrigation water can be calculated based on the irrigation schedule in irrigation manual. At present, the maximum irrigation manual, which was developed in 1999 for the maximum yield with maxmum irrigation, is using. Now the water saving irrigation manual for red pepper, without decrease of crop yield, has been developded in 45 areas of korea. Among 45 regions, 9 regions which were selected respectively from 9 Provinces of Korea, were used for this study. The water saving irrigation manual has been used easily without soil sampling and measurement of soil water status. The objective of this study is to assess the possibility of the saving of irrigation water compared to the maximum irrigation manual. The average potential evapo-transpiration (PET) during 30 years in 9 region for the red pepper cultivation was a $2.69mm\;day^{-1}$. The saving amount of irrigation water for red pepper cultivation by saving irrigation manual compared to the maximum irrigation manual in a year was 309.4 mm, 303.3 mm and 309.5 mm in the soil of Sandy Loam (SL), Loam (L) and Silty Loam (SiL), respectively. The average saving amount of irrigation water for red pepper cultivation by saving irrigation manual compared to the maximum irrigation manual in a year was 307.4 mm.

The Optimal Environmental Ranges for Wetland Plants : I. Zizania latifolia and Typha angustifolia (습지식물의 적정 서식 환경 : I. 줄과 애기부들)

  • Kwon, Gi Jin;Lee, Bo Ah;Byun, Chae Ho;Nam, Jong Min;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.72-88
    • /
    • 2006
  • The optimal environmental ranges of the establishment phase for the distribution of Zizania latifolia and Typha angustifolia was determined to develop a set of basic data and criteria of planting substrate for the restoration, conservation and management of wetlands. The study was carried at 17 wetlands in the Kyunggi-do and Gyeongsangnam-do region where inland wetlands place intensively in June, 2005. Total 127 quadrats were sets in growing areas of Zizania latifolia and Typha angustifolia. $NO_3-N$, K, Ca, Mg and Na in the water variables and soil texture, LOI (loss on ignition), soil pH and soil conductivity in the soil variables were analyzed. The optimal range of water depth for the distribution of Zizania latifolia was -5~39cm, $NO_3-N$ content of water was <0.01~0.19ppm, K content of water was 0.1~5.9ppm, Ca content of water 0.5~44.9ppm, Mg content of water was 1.2~11.9ppm, Na content of water 3.4~29.9ppm, water conductivity was 48~450${\mu}S$/cm, respectively. The optimal range of LOI for the distribution of Zizania latifolia was 1.7~11.9%, soil conductivity was 25.5~149.9${\mu}S$/cm, respectively. The optimal range of water depth for the distribution of Typha angustifolia was -20~24cm, $NO_3-N$ content of water was <0.01~0.19ppm, K content of water was 0.2~2.9ppm, Ca content of water 0.6~19.9ppm, Mg content of water was 0.2~5.9ppm, Na content of water 3.5~19.9ppm, water conductivity was 96~450${\mu}S$/cm, respectively. The optimal range of LOI for the distribution of Typha angustifolia was 2.4~15.9%, soil conductivity was 17.6~149.9${\mu}S$/cm, respectively. The optimal soil texture were loam, silt loam and sandy loam in both species. The lower water depth (-20~40cm) is appropriate to increase biodiversity in both species dominated community and it is better to maintain water depth of 40~100cm for water purification. Both species appear frequently in the soil with high silt content.

Calculation of Unsaturated Hydraulic Conductivity from Soil Moisture Changes in Pressure-Plate Extractor (Pressure-Plate Extractor 내(內) 토양수분함량(土壤水分含量) 변화(變化)로부터 불포화수리전도도(不飽和水理傳導度)의 계산(計算))

  • Ro, Hee-Myeong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1984
  • A study was carried out to develop a modified Gardner's method, which enabled us to obtain simultaneously both the unsaturated hydraulic conductivities and the moisture retention curves by the use of a soil moisture pressure-plate extractor. The unsaturated hydraulic conductivity was calculated from soil moisture changes under different tension ranges in the pressure- plate extractor by means of Gardner's pressure-plate outflow equation. From 30mbar-tension to 10bar-tension, the unsaturated hydraulic conductivities obtained on three soils (Bonryang sandy loam, Yesan silt loam, and Pogog clay loam) varied $3.09{\times}10^{-2}cm/day{\sim}4.06{\times}10^{-6}cm/day$, $1.34{\times}10^{-2}cm/day{\sim}7.30{\times}10^{-6}cm/day$, and $1.83{\times}10^{-2}cm/day{\sim}8.50{\times}10^{-6}cm/day$, respectively. In comparison with the outflow method, it is inconvenient to perform the periodic determinations of the soil moisture content that require release of the applied Pressure before readjusting the pressure desired for each measurement. Nevertheless, the main advantage of the modified method is that the unsaturated hydraulic conductivities of different soils can be calculated simultaneously with a small amount of each soil sample. It is concluded that the unsaturated hydraulic conductivity can be calculated from soil moisture changes in the soil moisture pressure-plate extractor.

  • PDF

A Study on Penetration of Pea Seedling Taproots as Influenced by strength of Soil (토양(土壤)의 경도(硬度)가 완두뿌리의 신장(伸長)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 1977
  • This experiment was conducted in the laboratory in order to find out the relationships between the root growth and soil physical properties. The soils selected for this study were Sangju sandy loam, Yeongog loam, Hwadong silty clay loam, which have been considered to be a typical upland soils of Korea. Artificial core samples were made with various moisture contents and bulk densities. Elongation rate of pea seedling taproot and soil strength were measured respectively in these core samples. The results obtained are summarized as follows: 1. The soil strength increased with the bulk density and deceased with moisture content. 2. The correlation between root elongation and soil bulk density was significantly recognized at the same moisture content and the root elongation was influenced by the bulk density more significantly at dry condition. 3. The elongation rate of pea seedling taproot was significantly decreased by increasing the strength (Yamanaka tester and Fine probe) of the soils. 4. The soil strength of $21kg/cm^2$ in fine metal probe or 24mm in Yamanaka tester was considered to be the critical point for plant growth, which was restricting root elongation smaller than 1/4 of the maximum growth rate.

  • PDF

Herbicidal Property and Soil Behavior of a New Herbicide, Azimsulfuron (신제초제(新除草劑) Azimsulfuron의 제초활성(除草活性)과 토양중(土壤中) 행동(行動))

  • Chun, J.C.;Ma, S.Y.
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.501-505
    • /
    • 1996
  • Azimsulfuron [1H-pyrazole-5-sulfonamide,N-(((4,6-dimethoxy-pyridine-2-yl-aminocarbonyl-4-(2-methyl-2H-tetrazole-5-yl)] is a new sulfonamide herbicide that selectively controls a wide range of weeds in lowland rice (Oryza sativa). It effectively controlled Cyperus serotinus, Eleocharis kuroguwai, Sagittaria pygmaea, S. trifolia, and Scirpus juncoides at 7.5 - 30 g ai/ha. In the tolerance test on grasses carried out in a nutrient solution containing 0.3 - 30 ppm of azimsulfuron, greater inhibition occurred in roots of both rice and barnyardgrass (Echinochloa crus galli) than in shoots. However, rice root was approximately 5-fold more tolerant than that of barnyardgrass. The downward movements as determined by 50% growth inhibition of S. juncoides were 4-cm in clay loam and 6.5-cm in sandy loam soil with 3-cm/day leaching for 3 days. When incubated at 20 and $30^{\circ}C$, the residual effect in clay loam soil lasted for 30 and 21 days, respectively. In a soil column applied at 15 g ai/ha of azimsulfuron followed by 3-cm/day leaching for 3 days, dry weights of S. trifolia emerging at 5, 10, and 15-cm depth were reduced to 87, 85, and 79% of the corresponding untreated control, respectively. Susceptibility of S. trifolia to azimsulfuron did not greatly vary with the emergence depth.

  • PDF

Persistence of IBP and Isoprothiolane in Rice Plant (수도체(水稻體)중 IBP 와 Isoprothiolane의 잔류소장(殘留消長))

  • Lee, Hae-Keun;Jeong, Young-Ho;Han, Ki-Hak
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.2
    • /
    • pp.93-98
    • /
    • 1982
  • Effect of the application time on the persistence of IBP and isoprothiolane in rice plant was studied in the field and effects of the water depth and soil texture on their persistence were also tested as a pot experiment. When granules were applied to the rice paddy water, two fungicides were readily absorbed through the root system and rapidly translocated to the upper parts of the plant. The concentrations of two fungicides in rice plant reached to the maximum within 24 hr regardless of the application time. When applied at the maximum tillering stage, the persistence pattern of two fungicides in plant showed similar trends; that is, residue levels of two compounds declined rapidly upto 7 days after application but more slowly thereafter. When applied at the heading stage, the persistence pattern of IBP in plant was similar to the maximum tillering stage while isoprothilane was quite different; 3 ppm reached on 3rd days after application was maintained almost constant for further 25 days. There was no effect of the water depth on the persistence of two compounds in plant and IBP concentration in plant was also not affected by soil texture. However, isoprothiolane in plant was higher in sandy loam than in loam and clay loam. Isoprothiolane residues in plant were much higher than those of IBP.

  • PDF

Evaluation of Watershed Stability by the Forest Environmental and Stream Morphological Factors (산림환경 및 하천형태인자에 의한 유역안정성 평가)

  • Jung, Won-Ok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory(I) for evaluation of the watershed stability. Present annual mean sediment yield of erosion control dams were investigated in 167 sites of erosion control dam constructed during 1986 to 1999 in Gyeongbuk. The results obtained from this study were summarized as follows; According to the coefficients of partial correlation, each factor affecting to sediment was shown in order of gravel contents, number of first streams order, number of total streams, length of total streams, forest type, length of main stream, parent rock, stand age, soil texture, stream order, slope gradient, soil depth and aspect. Descriptions of class I were as follow; Igneous rock of parent rock, hardwood stands of forest type, less than 20 year of stand age, less than 30cm of soil depth, sandy clay loam of soil texture, more than 41% of gravel contents, south~east of aspect, 2,501~3,500m of length of main stream, 21~25 of number of total streams, 5,501~10,000m of length of total streams, 3 or more than 4 of stream order, more than 16 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class II were as follow; Metamorphic rock of parent rock, coniferous stands of forest type, more than 25 year of stand age, 31~40cm of soil depth, silt loam of soil texture, 11~20% of gravel contents, north~west of aspect, 2,501~3,500m of length of main stream, 16~20 of number of total streams, 3,501~5,500m of length of total streams, 3 of stream order, 11~15 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class III were as follow; Sedimentary rock of parent rock, mixed stands of forest type, more than 25 year of stand age, more than 51cm of soil depth, silty clay loam of soil texture, less than 10% of gravel contents, south~west of aspect, less than 500m of length of main stream, less than 5 of number of total streams, less than 1,000m of length of total streams, less than 1 of stream order, less than 2 of number of first stream orders and less than $25^{\circ}$ of slope gradient. The prediction method of suitable site for erosion control dam divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very unstable area was more than 8.4494. A score of class II was 8.4493 to 6.0452, it was evaluated as a moderate stable area, and class III was less than 6.0541, it was evaluated as a very stable area.

  • PDF

Current Status of Ginseng Cultivation and Soil Characteristics of Northeastern Three Provinces in China

  • Park, Yang Ho;Kim, Jang Uk;Kim, Dong Hwi;Sonn, Yeon Kyu;Yun, Jin Ha;Moon, Huhn Pal;Cho, Soo Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.795-806
    • /
    • 2016
  • This study was conducted to improve the continuous techniques for international competitiveness of ginseng industry to Korea-China FTA negotiation and conclusion, and provide the basic information for ginseng industry development of Korea. It was carried out the visiting of the northeastern three provinces (Jilin, Liaoling and Heilongjang) in China for 3-year from 2014 to 2016 and observed the farmers' fields of ginseng cultivation with soil environmental status. The types of ginseng cultivation could be observed in small scales of 0.5~3.0 ha, in middle scales of 4.0~10.0 ha and in large scales of 30~700 ha with the kinds of imhasam, Chinese ginseng, Korean ginseng and western ginseng. Also ginseng was cultivated in newly reclaimed land of forest in two types of direct seeding and transplanting of ginseng seedlings. The field beds of ginseng growing were covered with vinyl films in arch design of 100~130 cm height and vinyl was painted in spraying with blue, green and yellow colours for shading. It was investigated in status of the physico-chemical properties of soils. The physical information on the field soils were silt loam, loam and sandy loam in soil textures, and some plain in low slope, some alluvial fan or local valley in forest of land topography. Soil pH ranged within 5.0~5.2, soil EC was $0.93{\sim}3.78dS\;m^{-1}$, organic matter was $37{\sim}35g\;kg^{-1}$, nitrate nitrogen $63{\sim}490mg\;kg^{-1}$, available $P_2O_5$ $55{\sim}163mg\;kg^{-1}$, and in exchangeable cations, K was 0.30~0.98, Ca was 6.5~14.0, Mg was $1.1{\sim}5.3cmol_c\;kg^{-1}$ in ranges. Farmers used the fertilizer for ginseng cultivation in 10~11 t of compost, $200{\sim}400kg\;ha^{-1}$ of complex fertilizer and $750kg\;ha^{-1}$ of oil cakes. The northeastern three provinces of China can use the newly lands with large areas of ginseng cultivation in soil sickness by continuous cropping. and the soil basic fertility is batter than that of Korean in standard guide of ginseng cultivation soil.

Effect of Soil Properties on Leaching of Preservative Components from CCA-treated Wood (토양 특성이 CCA 처리재로부터 방부제 성분의 용탈에 미치는 영향)

  • Jeong, Yong Gi;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.87-94
    • /
    • 2005
  • This study was carried out to investigate the effect of soil types and soil properties on wood preservative leaching. Radiata pine (Pinus radiata Don.) sapwood stakes, which had been treated with 2.0%(w/v) CCA, were leached for 12 weeks by a common laboratory method in four different soils and for 14 days by the AWPA standard leaching method in water. The physical and chemical properties of the four soils were determined, and the percent leaching of the individual component of CCA was correlated with the various soil properties. The data show that leaching of preservative chemicals from treated wood exposed to soil is influenced by the type of soil. The preservative leaching was greater when wood was exposed to water than when the wood was in contact with water-saturated soil. The greatest chromium, copper and arsenic leaching from CCA-treated stakes were observed in the sandy loam, loam, and sand, respectively, and the least amount of leaching of CCA components occurred in the silty loam. The leaching of preservative components from treated wood is extremely complex and appears to be influenced differently by the soil properties. The extent of copper leaching from CCA treated wood appears to be related to exchangeable Mg and sum of bases. There is a reasonably good relationship between chromium leaching and exchangeable Mg, and between arsenic leaching and exchangeable K, soil Ni, Mn, Fe, Cr, or Cu content. Since this study was conducted based on laboratory leaching method using small cross-sectional dimensions; thus, data obtained from this experiment should not be used to predict leaching characteristics from commercial-size wood used in real situation. Accordingly, further studies are necessary using outdoor ground-contact leaching.

Chemical Characteristics of Plastic Film House Soils in Chungbuk Area (충북(忠北) 지역(地域) 시설재배(施設栽培) 토양(土壤)의 화학적(化學的) 특성(特性))

  • Kang, Bo-Koo;Jeong, In-Myeong;Kim, Jai-Joung;Hong, Soon-Dal;Min, Kyeong-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 1997
  • The salt accumulation, and chemical properties of 90 samples of the plastic film house soil in the area of Cheongju and Chungju were surveyed. Soil textural distribution of soil samples was 30% for sandy loam, 27% for loam and 43% for silty loam. Percentage distribution of electrical conductivity(EC) of surface soil was 23% below $2dS\;m^{-1}$, 30% for $2{\sim}4dS\;m^{-1}$, 25% for $4{\sim}6dS\;m^{-1}$ and 22% over $6dS\;m^{-1}$. Salt affected soil, which EC was higher than $4dS\;m^{-1}$, covered nearly 50% of all field surveyed. However subsoils(20~30cm) below $2dS\;m^{-1}$ was 68%. Salts in plastic film house soil was accumulated by increasing the cultivation period. After 5 years of cultivation electrical conductivity in plastic house soil was generally higher than $4.47dS\;m^{-1}$ in EC that was 2.8~5.6 times higher than that in the field soil in the outside of plastic film house. As the result of temporary removal of plastic film cover from the house during the rainy summer season, salt content in soil was decreased from $3.54{\sim}7.36dS\;m^{-1}$ to $0.71{\sim}2.92dS\;m^{-1}$ in EC due to the desalinization by runoff and percolating water. Contents of $NO_3-N$, $SO_4-S$ and Cl in plastic film house soil were 2.5. 7.0 and 3.4 times higher than those of open field respectively.

  • PDF