• Title/Summary/Keyword: sandy acid soil

Search Result 72, Processing Time 0.038 seconds

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

The Relations between Growth and Physiological Characteristics of Potted Ginkgo Biloba L. Seedlings Treated with Simulated Acid Rain (人工酸性雨가 處理된 盆植한 은행나무幼苗의 生長과 生理的 特性과의 相關)

  • Kim, Gab-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 1987
  • One-year-old seedlings of Ginkgo biloba, potted in three different soils (nursery soil, mixed and sandy soil), were treated with simulated acid rain (pH 2.0, 3.0, 4.0 and 5.0) and tap water (control, pH 6.4) during the growing seasons (1985. 4. 28 - 1985. 10. 19) to examine the effects of acid rain on growth and physiological characteristics, and the relations between seedling growth and physiological characteristics. The results obtained in this study were as follows: 1. The effects of soil types on the total, top and root dry weight per seedling were significant at 5% level, and those of the pH of the rain treated at 1% level. The total dry weight of the pH 3.0 sub-plots was the highest for nursery soil, while for mixed and sandy soils, those of the control and the pH 5.0 sub-plots were the highest, respectively. 2. The leaf surface areas of pH 2.0 sub-plots severely decreased after July, but those of other sub-plots were not affected. The correlations between growth and leaf surface area differed among soil-types, however, the highest positive correlation was found in September. 3. The injured leaf rate increased with decreasing pH levels of acid rain. Highly negative correlations between growth and injured leaf rate were found. 4. The lower the pH level of acid rain treated was, the more the chlorophyll content was measured at the beginning of treatment, and the more severely it decreased at late growing season. A negative correlations were found in August, September and Octobfer. 5. The photosynthetic ability decreased rapidly after July with decreasing pH levels. A highly positive correlation between growth and photosynthetic ability was found in August.

  • PDF

Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 토성에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1176-1180
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 11 sites for silt loam, 4 sites for sandy loam, and 5 sites for loam in Gyeongnam Province. The FAME content of fungi in loam ($76nmol\;g^{-1}$) was higher than that of in sandy loam ($45nmol\;g^{-1}$). Sandy loam had significantly lower ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of silt loam (p<0.05), indicating that microbial stress decreased. In addition, actinomycetes community of loam was higher than that of sandy loam.

Soil Washing of Abandoned Mine Soils Contaminated by Heavy Metals (중금속 오염 폐광산 주변토양의 세정)

  • Lee, Jun-Ho;Nam, Kwon-Chul;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.871-878
    • /
    • 2006
  • Batch experiments were performed to evaluate the applicability of soil washing for heavy metal contaminated soils at Nacdong and Hamchang abandoned mines. The texture of the Nacdong soil was sandy loam. Nacdong abandoned mine soil was almost neutral (pH=6.5). Contaminations of As, Cd, Pb and Zn for Nacdong mine soils were 12,900 mg/kg, 29 mg/kg, 696 mg/kg and 276 mg/kg, respectively. Hamchang abandoned mine soils were acidic (pH=2.6) and the soil texture was loam. The contaminations of As, Cd, Pb and Zn for Hamchang abandoned mine soils were 6,410 mg/kg, 291 mg/kg, 1,300 mg/kg and 1,110 mg/kg, respectively. For the Nacdong abandoned mine soils, oxalic acid was found to be the most effective soil washing extracter for As and Pb while citric acid was the most effective extracter for Cd. For the Hamchang abandoned mine soils, oxalic acid showed the highest extraction efficiencies for As and Pb, whilst citric acid presented the best soil washing efficiencie for Cd. Oxalic acid and EDTA were found to be the most effective soil washing extracter for the Hamchang abandoned mine contaminated soils.

Containing Heavy Metal Contaminants Using Soil-Cement Column Barrier (심층혼합기둥체 차수벽을 이용한 중금속 오염물질의 이동 제어)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.821-826
    • /
    • 2003
  • Laboratory experiments were peformed to understand physical properties of soil-cement column under the influence of acidic flow including metal contaminants and its retaining capacity against metal migration. The contaminant used in this study was nitric acid with Cu and Cd. The Permeability of soil-cement column decreased when pH of the column began to drop below 12. Decreases in pH led to significant reduction of compressive strength of clayey soil-cement specimen, while relatively marginal reduction for sandy soil-cement specimen. The metal contaminants did not leachate from soil-cement column until pH of soil-cement dropped below 7∼8 for Cu and 9∼10 for Cd. Metal contaminants were precipitated and trapped inside the soil-cement column at pHs higher than those mentioned as verified with metal analysis and visual inspection. This indicated that soil-cement column not only performs well as a cut-off wall, but also helps alleviating the level of contamination of the surrounding environment.

  • PDF

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

IBA Treatment of Poplar Cuttings and Soil Composition Amendment for Improved Adaptability and Survival

  • Cho, Wonwoo;Chandra, Romika;Lee, Wi-young;Kang, Hoduck
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • Poplar trees from the Salicaceae family over the years have been utilized for various reasons which include prevention of deforestation as well as phytoremediation. This study aims to determine the optimal pre-treatment and soil conditions required for propagation of poplar cuttings for increased initial adaptability and survival rate. Five poplar clones (Hanan, 110, 107, DN-34, 52-225) were selected for IBA, soil composition treatments on propagation. IBA pre-treatment of cuttings were utilized 0, 10, and 100 mg l-1 concentrations. Soil compositions were amended with TKS-2+perlite 2:1 (v:v) and sandy clay loam mixed with artificial soil. According to the greenhouse results 10 mg l-1 of IBA showed a significant increase in plant height whereas 100 mg l-1 inhibited plant growth except in clone 110. Soil composition severely affected root growth and hence overall growth of the clones. Sandy clay loam soil had poor to stunted growth compared to TKS-2+perlite.

Changes in Growth and Saponin Content in Roots of Bellflower (Platycodon grandiflorum (JACQ.) A. DC.) with Different Soil Textures (토성에 따른 도라지뿌리의 생육과 성분함량 변화)

  • Mi-young Park;Yong Chul Kim;Soon-Wook Kwon;Su-Noh Ryu;Tae-ho Ham
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.296-304
    • /
    • 2022
  • To maximize the medicinal properties of bellflower root (Platycodi radix), its growth and development according to soil texture were investigated using four types of soil: masato (decomposed granite), soil mix, loamy sand, and sandy loam. Saponin content was measured. With regard to bellflower root growth depending on soil texture, its growth was better in the order of loamy sand > sandy loam > soil mix > masato in the above-ground part, and loamy sand > soil mix > sandy loam > masato in the underground part in the order. The average content of general ingredients were 77.3% water, 2.6% crude fat, 3.2% crude flour, 6.0% crude protein, and 10.9% carbohydrates. With respect to saponin analysis of bellflower roots, the saponin content regarding platycodin D, platycodin D3, polygalacin D, and deapioplatycodin D were higher in the order of 282.4, 104.7, 29.1, 19.1 mg/100 g, respectively. The content of organic matter and phosphoric acid was high in soil mix and sandy loam, and platycodin D3 showed similar levels in all soil types. As a result, the soil mix is considered most suitable in terms of yield and component levels, however, it is the most expensive type. As a replacement, sandy loam was adequate in terms of fresh weight related to yield and highest saponin content.

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Jeong, Jeong-Seok;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).

Effects of Simulated Acid Rain on Chemical Properties of the Experimental Soil of pinus densiflora S. et Z. and Forsythia Koreana Nak. Seedlings (人工酸性雨가 소나무 및 개나리 盆植苗土壤의 化學的 性質에 미치는 影響)

  • Cheong, Yong-Moon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 1988
  • For the purpose of examining the effects of simulated acid rain on the chemical properties of the experimental soil in Pinus densiflora seedlings and Forsythia koreana rooted cuttings, the experimental design of randomized block arrangement with three replications was implemented in the experimental field of Yesan National Agricultural Junior College. One-year-old Pinus densiflora seedlings and Forsythia koreana cuttings were planted in the pots filled the mixed soils (nursery soil: forest soil of siliceous sandy loam = 1 : V/V)in the early spring of 1985. The regime of artificil acid rain, in terms of spray frequency per monthly and spray amount at single treatment per plot, was simulated on the basis of climatological data averaged from 30 years records. Simulated acid rain (pH 2.0, pH4.0, and pH 5.5 as control) containing sulfuric and nitric acid in the ratio of 3:2 (chemical equivalant basis) diluted ground water, were treated on the experimental plants under condition of cutting off the natural precipitation with vinyl tunnel, during the growing season (May 1 to August 31) in 1985. THe results obtained in this study were as follows; 1. Soil acidity was dropped, and exchangeable aluminum contents in the soil was dramatically increased in both species, with decreasing pH levels of acid rain. 2. Exchangeable potassium, clacium, magnesium contents, and base saturation degree of the soil were highly drcreased in two species as the pH levels of acid rain decreased. 3. In two species, sulfate concentrations in the soil were decreased of pH 4.0 treatment, and remarkably increased at pH 2.0 treatment of acid rain in comparison with control. 4. Total nitrogen and available phosphate contents of the soil were not affected by acid rain treatment in the both species, and Fe contents at pH 2.0 treatment were highest among three acid rain treatments.

  • PDF