• 제목/요약/키워드: sandwich-plates

검색결과 227건 처리시간 0.022초

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets

  • Xu, Kuo;Yuan, Yuan;Li, Mingyang
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.633-642
    • /
    • 2019
  • In this work, lightweight sandwich plates consisting of a functionally graded porous (FGP) core and two laminated composite face sheets resting on elastic foundation have been proposed. Three different profiles are considered for the distributions of porosities along core thickness. The main aim of this paper is the investigation of the buckling behavior of the proposed porous sandwich plates (PSPs) by reporting their critical mechanical loads and their corresponding mode shapes. A finite element method (FEM) based on first order shear deformation theories (FSDT) is developed to discretize governing equations for the buckling behavior of the proposed sandwich plates. The effects of porosity dispersion and volume, the numbers and angles of laminated layers, sandwich plate geometrical dimensions, elastic foundation coefficients, loading and boundary conditions are studied. The results show that the use of FGP core can offer a PSP with half weight core and only 5% reduction in critical buckling loads. Moreover, stacking sequences with only ${\pm}45$ orientation fibers offer the highest values of buckling loads.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates

  • Hamidi, Ahmed;Houari, Mohammed Sid Ahmed;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.235-253
    • /
    • 2015
  • In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory (SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic ceramic material. Comparison studies are performed to check the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the volume fraction exponent, and the loading conditions on the thermomechanical response of functionally graded sandwich plates is also investigated and discussed.

가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안 (Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores)

  • 성대용;정창균;심도식;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

  • Nguyen, Kien T.;Thai, Tai H.;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.91-120
    • /
    • 2015
  • A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.

확장금속망 공정으로 제작된 옥테트 트러스 다공질 금속 (I) - 압축 및 전단 특성 - (Modified Octet Truss Cellular Metals Fabricated by Expanding Metal Process (I) - Compression and Shear Properties -)

  • 주재황;이동석;전인수;강기주
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1124-1130
    • /
    • 2007
  • This paper presents a new way for fabricating sandwich plates with tetrahedral truss cores. The tetrahedral truss cores are manufactured through metal expanding and bending process and then brazed with solid face sheets. The properties of sandwich plates with the tetrahedral truss cores composed of a wrought steel SS41 under compression and shear loading have been investigated. Good agreement is observed between the measured and predicted peak strengths. Comparisons with normalized compressive strength for other cellular metals have indicated that the tetrahedral truss structures outperform aluminum open cell forms and woven core sandwich plates.

Orthotropic sandwich plates with interlayer slip and under edgewise loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • 제17권2호
    • /
    • pp.153-166
    • /
    • 2004
  • An elasticity solution for sandwich plates assembled with non-rigid bonding and subjected to edgewise loads is presented. The solution satisfies the equilibrium equations of the face and core elements, the compatibility equations of stresses and strains at the interfaces, and the boundary conditions. To investigate the effects of bonding stiffnesses on the responses of sandwich plates, numerical evaluations are conducted. The results obtained have shown that the bonding stiffness, up to a certain level, has a strong effect on the plate mechanical response. Beyond this level, the usual assumption of perfect bonding used in classical theories is quite acceptable. An answer to what constitutes perfect bonding is found in terms of the ratio of the core stiffness to the bonding stiffness.

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

네변이 고정된 사각 샌드위치 평판에서의 수직 및 전단 감쇠 효과 (Shear and Normal Damping Effects of Square Sandwich Plates with Four Edges Clamped)

  • 이병찬;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.217-223
    • /
    • 1996
  • A structure's vibration characteristic is determined by modal property of the system. Through proper vibration analysis or experiments, the structure can be modified to reduce of vibration and noise. This paper is concerned with the natural frequency and modal loss factor of sandwich plates with viscoelastic core. The effects of shear and normal strain in the viscoelastic layer are investigated on modal properties, natural frequency and modal loss factor, by changing geometry parameter and viscoelastic material property of sandwich plates. The errors of modal parameters resulting from neglecting the extension or compression in the core material for simply supported(S-S-S-S) case are compared with those for clamped(C-C-C-C) boundary condition. Finite difference method(FDM) is utilized as numerical analysis technique of square sandwich plates for fixed boundary conditions. In order to reduce computation time and increase accuracy, improved finite difference expression with fourth order truncation error was used.

  • PDF