• 제목/요약/키워드: sand size

검색결과 924건 처리시간 0.026초

혼사전력 변화에 의한 합성사의 혼련특성에 관한 연구 (The study on the mixing character of synthetic molding sand by power change)

  • 김영식;정종연;이종남
    • 한국주조공학회지
    • /
    • 제4권1호
    • /
    • pp.12-20
    • /
    • 1984
  • In order to investigate the effect of size of sand grains, bentonite content and moisture on mixing power, standard mixing power, permeability, green compressive strength and green mold hardness were measured with mixing time, and also coated layer of mixed sand with time was observed by optical microscope and scanning electron microscope. From this experiment, the results were summarized as follows. 1. Mixing power increased as size of sand grains decreased. 2. Mixing power increased gradually as bentonite content increased and in particular, increased rapidly in 7-10% bentonite. 3. Mixing power increased as moisture content decreased. 4. The mixing time required to get the optimum mixing power decreased as moisture content and grain size increased, but increased as bentonite content increased.

  • PDF

대청도 지두리 해안의 모래 퇴적층의 특성과 매몰연대에 대한 연구 (A Study on the Characteristics and Burial Ages of Sediment Deposits at Jiduri, Daecheong Island)

  • 김종연
    • 한국지형학회지
    • /
    • 제25권1호
    • /
    • pp.1-17
    • /
    • 2018
  • The characteristics and burial ages of sand sediments on the Jiduri coast in Daechung-myeon, Ongjin-gun, Incheon were investigated. Daecheong Island is the area where the characteristics of the rocky coast and sand coast are shown. Various studies have been conducted on the Okjukdong sand dune that appears in the north of the island. However, there has been no study on the sandy sedimentary topography of the Jiduri and Moraewul area in the south. The sandy sedimentary terrain of Jiduri is divided into sandy beaches, sand dunes and sand deposits along the slope including climbing dune. Overall, the depth of sandy sediments in Jiduri is not deep. The characteristics of sandy sediments and burial ages were investigated at an elevation of about 23 m above sea level at the back of Jiduli Beach and 46 m above sea level at the ridge line between Jiduri and Moraewol. From the Jiduri coast to the hillside behind, the average grain size decreases and the sorting becomes better as it moves from the intertidal zone to the beach and the foredune. This indicates the selective sand transport by the wind and can be judged by the terrain formed under the current sedimentation environment. The average grain size at the upper part of the section of JD-1 (elevation of about 23m MSL) was $1.6918{\varphi}$ of medium sand. The sorting was $0.4584{\varphi}$, skewness was -1.0491 and kurtosis was -1.2411, respectively. Particularly, the average particle size of the crosssection issomewhat uniform, but the color of the constituent material changes from brown to black. In the case of JD-2 (about 46 m MSL), the mean grain size of the section was $1.7943{\varphi}$, the sorting was 0.4931, the skewness was -1.1163, and the kurtosis was 1.2133. On the other hand, the brown and black layers of JD-1 exhibited a burial age of $0.1{\pm}0.0ka$ and the JD-2 had a burial age of $0.7{\pm}0.0ka$.

Standard sand for geotechnical engineering and geoenvironmental research in Nigeria: Igbokoda sand

  • Ojuri, Oluwapelumi O.;Fijabia, David O.
    • Advances in environmental research
    • /
    • 제1권4호
    • /
    • pp.305-321
    • /
    • 2012
  • This study entails establishing reference standard sand in Nigeria for engineering and geoenvironmental research work. Sands from four geographical locations in southwestern Nigeria were examined for baseline geotechnical and mineralogical properties. A total of sixteen sand samples were collected. The samples were air dried and subjected to tests in accordance with standard specifications. The tests carried out were: specific gravity, grain size analysis, moisture content, bulk density, porosity, void ratio, chemical analysis, X-ray diffraction and Differential Thermal Analysis. The properties of the samples were compared with a standard (Ottawa sand in Illinois of the United States) in order to find out which of the four samples selected from southwestern Nigeria could serve as standard baseline sand. The results show that Igbokoda sand has geotechnical and mineralogical characteristics closest to Ottawa sand. It was therefore concluded that Igbokoda sand could be used as a standard baseline sand for research work in southwestern Nigeria and other parts of Nigeria since it needs little processing to bring it to the same level as standard baseline sand, like the Ottawa sand.

Recycling of $CO_2$-Silicate Bonded Sand

  • Kwon, Hyuk-Moo;Lee, Seoung-Won
    • 자원리싸이클링
    • /
    • 제5권1호
    • /
    • pp.9-13
    • /
    • 1996
  • Once-used $CO_2$-silicate bonded sand from domestic foundry is mostly discarded in a reclaimed land because of its bad collapsibility and reproduction properties. So this causes serious environmental problem. We can get 82% recovery of silica from used sand by scrubbing reclamation process in this research. When we repeat the reclamation-recycling of the foundry sand, artificial silica sand is broken down below 2-cycles, but natural silica sand does not destroyed when used repeatedly more than 10-cycles and have a good property of recycling with little change of its size.

  • PDF

고압벽돌의 강도와 모래입도에 관한 연구 (Effect of Particle Size Distribution of Sand on Compressive Strength of Calcium Silicate Brick)

  • 김병무;최명식;이경희
    • 한국세라믹학회지
    • /
    • 제15권4호
    • /
    • pp.193-198
    • /
    • 1978
  • Test-bricks were prepared from an artifically graded Ham Kang sand and a commercial CaO and autoclaved for 6 hours at $16 kg/cm^2$ pressure $(203^{\circ}C)$. Bricks were tested for compressive strength, free lime, saluble silica and amount of water absorption. Physical properties of bricks were very much depended on the size distribution of sand particle and the amount of soluble silica in bricks.

  • PDF

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • 한국환경농학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.

범용 평판 스캐너를 이용한 해빈 모래의 입도분석 (Beach Sand Grain Size Analysis using Commercial Flat-bed Scanner)

  • 천세현;안경모;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.301-310
    • /
    • 2013
  • 모래의 입도를 분석하기 위해서는 체진동기, 비디오카메라, 현미경, 레이저 회절분석기 등 비교적 고가의 장비들이 사용된다. 이 장비들 중 가장 널리 사용되는 것이 체진동기이며, 이는 체가름 시험법에 사용되는 체진동기의 가격이 다른 장비에 비해 상대적으로 저렴할 뿐 아니라 그 정확도가 널리 인정되고 있기 때문이다. 그러나 체가름 시험법은 분석에 필요한 시간이 길고 분석 시 소음과 먼지 등이 발생하며 사용 가능한 체의 크기가 한정되어 분석 급간의 조정이 어려운 단점이 있다. 본 연구에서는 해빈 모래에 대하여 체가름 시험법 수준의 정확도를 갖는 효율적인 입도분석 방법으로 범용 평판 스캐너와 암실상자를 이용한 방법을 제안하였다. 암실상자는 스캐너에서 얻어지는 모래 입자의 이미지를 보다 선명하게 하며 모래 입자로부터 평판 스캐너의 상부 유리 덮개를 보호하는 역할을 한다. 본 연구에서 제안한 방법을 체가름 시험법과 비교 검증하였다. 검증결과 본 연구에서 제안한 평판 스캐너를 이용한 해빈 모래의 입도분석 방법을 체가름 시험법 수준의 정확성을 가지고 있을 뿐 아니라 분석에 필요한 시간과 노력을 크게 줄일 수 있었다.

Investigation on physical and mechanical properties of manufactured sand concrete

  • Haoyu Liao;Zongping Chen;Ji Zhou;Yuhan Liang
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.177-188
    • /
    • 2023
  • In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.

Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses

  • Wang, Z.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • 제2권4호
    • /
    • pp.303-319
    • /
    • 2010
  • The effect of grain crushing on the deformation of sand in 1D compression and 1D creep at high stresses was investigated theoretically and experimentally. An approach was proposed to formulate the process of grain crushing in sand in accordance with the laws of fracture mechanics and energy conservation. With this approach, the relation between the void ratio and the amount of grains crushed in 1D compression was derived. Laboratory test data were used to verify this derived relation. In addition, it was observed that there are similarities in evolution of grain size distribution in 1D compression and 1D creep tests. This implies that the changes in microstructure in sand under 1D compression and 1D creep are comparable.

휴대용콘의 선단저항값을 이용한 모래의 상대밀도 및 내부마찰각 추정 (Estimation of the Relative Density and Internal Friction Angle for Sand using Cone-tip Resistance of the PCPT)

  • 박재성;손영환;노수각;봉태호
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.137-145
    • /
    • 2012
  • Sand is one of the essential materials used for social infrastructure construction such as embankment, landfill and backfill. It was known that mechanical properties and shear strength of sand are closely related to relative density. Therefore it is very important to determine accurate relative density. In this study, Portable Cone Penetration Tester (PCPT) was used to estimate the relative density and the internal friction angle of sand. PCPT cone-tip resistance ($q_c$) was measured changing the relative density of the two soil samples.Standard sand (JMJ) and Busan sand (BS). Also, a direct shear test was performed to investigate relationship between relative density and internal friction angle. The size and shape of soil particles were confirmed by using Scanning Electron Microscope (SEM). As a result, the log value of $q_c$ was linearly correlated with relative density and internal friction angle. In particular, the internal friction angle of BS sample was greater than that of JMJ, which was due to difference of the shape and mean size of particles. This result shows that it is important to determine the shape and size of particles as well as relative density to define mechanical property of sand. Through this study, it can be more effectively and conveniently to investigate relative density and shear strength of sand by using PCPT in situ.