• Title/Summary/Keyword: sand size

Search Result 924, Processing Time 0.023 seconds

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향)

  • Ahn, Ji-Hong;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

A Study on the Room Temperature Properties of Molding Sand with different Sand Grain Size (규사(硅砂)의 입도(粒度)에 따른 주물사(鑄物砂)의 상온성질(常溫性質)에 관(關)한 연구(硏究))

  • Choi, Dong-Soo;Lee, Kye-Won
    • Journal of Korea Foundry Society
    • /
    • v.3 no.3
    • /
    • pp.167-173
    • /
    • 1983
  • The effect of sand grain size on the various properties of mold is not only basic but important interest which we have to deal with.And the relation among the various properties of mold (strength, permeability, flowability, compactability, hardness, deformation, toughness etc.) is very complicated and inaccurate, so we can delineate the behavior of mixture (sand+water+bentonite) with experience only. Within recent years a so-called rigid-water theory has been accepted as a means of advancing logical explanations for the research aimed at delineating sand-clay-water relationships. By changing grain size or mesh no. of grain, specimens have been subjected to green compressive strength, permeability, deformation, flowability, compactablity, toughness at room temperature. Under constant mulling energy and ratio of water/bentonite, the results obtained were as follows: 1. With decreasing grain size green compressive strength of the specimen increased. 2. With decreasing grain size permeability decreased. 3. With decreasing grain size flowability and bulk density decreased but compactability increased. 4. With decreasing grain size deformation decreased but toughness increased. 5. At 60 mesh no., the properties of specimen are conspicuously changed. The reason is that the total surface area of sand grain which affects the type of bonding between sand grains is more changed at 60 mesh number.

  • PDF

Effect of the type of sand on the fracture and mechanical properties of sand concrete

  • Belhadj, Belkacem;Bederina, Madani;Benguettache, Khadra;Queneudec, Michele
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The principal objective of this study is to deepen the characterization studies already led on sand concretes in previous works. Indeed, it consists in studying the effect of the sand type on the main properties of sand concrete: fracture and mechanical properties. We particularly insist on the determination of the fracture characteristics of this material which apparently have not been studied. To carry out this study, four different types of sand have been used: dune sand (DS), river sand (RS), crushed sand (CS) and river-dune sand (RDS). These sands differ in mineralogical nature, grain shape, angularity, particle size, proportion of fine elements, etc. The obtained results show that the particle size distribution of sand has marked its influence in all the studied properties of sand concrete since the sand having the highest diameter and the best particle size distribution has given the best fracture and mechanical properties. The grain shape, the angularity and the nature of sand have also marked their influence: thanks to its angularity and its limestone nature, crushed sand yielded good results compared to river and dune sands which are characterized by rounded shape and siliceous nature. Finally, it should further be noted that the sand concrete presents values of fracture and mechanical properties slightly lower than those of ordinary concrete. Compared to mortar, although the mechanical strength is lower, the fracture parameters are almost comparable. In all cases, the sand grains are debonded from the paste cement during the fracture which means that the crack goes through the paste-aggregate interface.

The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings (AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구)

  • Kang, Hyo-Gyoung;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF

The Effect on the growth of landscaping trees by fixed trampling in brick paved under-surface soil physical properties -Sand bed's thickness & prticle size were setted by experimental variable factors (일정 답압시 보도블럭포장재 하부 토양물리성의 변화가 조경수 생육에 미치는 영향 - 포설모레 두께 및 립경을 실험변이 인자로 설정하여 -)

  • 조재현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.94-103
    • /
    • 1997
  • The purpose of this study is to find out the effects of brick paved under-surface soil physical properties which are changed by fixed trampling. Thus, a sandy loam which is known as a profitable soil for plants is used an experimental soil to study the changes of the soil physical properties. It is related to sand bed's thickness & particle size which are settled by experimental variable factors. According to the variation of sand bed's particle size, bulk density and soil hardness at natural dryed soilcondition result in 0.075~2.00mm>2.00~5.00mm>2.00~8.00mm>5.00~8.00mm, and water content at natural dryed soil condition are observed being insensible change rate from the point that sand thickness is 30~40mm and more sand bed's thickness constructed by the variation of sand bed's thickness.

  • PDF

Evaluation of Sand-Cone Method for Determination of Density of Soil (모래 치환법을 이용한 흙의 밀도 시험에 관한 고찰)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.23-29
    • /
    • 2009
  • A sand-cone method is commonly used to determine the density of the compacted soils. This method uses a calibration container to determine the bulk-density of the sand for use in the test. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to fall approximately the same height as a test hole in the field. However, in most cases the size or shape of test hole is not exactly the same as the calibration container. There is certain discrepancy between sand particle settlement or arrangement in the laboratory calibration and in the field testing, which may cause an erroneous determination of in-situ density. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. The sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field.

  • PDF

A Numerical Study on the Size and Depositions of Yellow Sand Events (황사의 크기 및 침착량에 대한 수치 모의)

  • 정관영;박순웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.191-208
    • /
    • 1998
  • Estimations of dry and wet depositions in Korea and the size distributions of yellow sand above Korea have been carried out using the Eulerian aerosol model with the simulated meteorological data from the SNU mesoscale meteorological model. The estimated particle size distribution in Korea shows a bimodal distribution with peak values at 0.6 pm and 7 pm and a minimum at 2 pm in the lower layer However, as higher up, the bimodal distribution becomes an unimodal distribution with a peak value at 4∼5mm. Among the total amount of yellow sand deflated in the source regions , the dry and wet deposition fluxes were about 92%, and about 1.3∼0.5%, repectively, and the rest(5∼6%) is suspended in the air, Most of dust lifted in the air during the clear weather is deposited in the vicinity of the source regions by dry deposition and the rest undergoes the long -range transport with a gradual removal by the wet deposition processes. Over Korean peninsula, the total amount of yellow sand suspended in the air was about 6∼8% of the emissions in the source region and the dry and wet deposition fluxes were about 0.005∼0.7% and 0.003∼0.051% of the total emitted amount, repectively. It is estimated that 2.7∼8.9 mesa-tons of yellow sand is transported annually over the Korean peninsula with the annual mean dry deposition of 2.1∼490 kilo-tons and the annual mean wet deposition of 1.5∼65 kilo-tons.

  • PDF

Evaluation of Rapid filtration System with Particle Size Distribution and Turbidity in Different Effective Sizes

  • Park, J.A.;Eo, S.M.;Shin, J.S.;Kim, M.H.;Yu, M.J.;Chung, S.H.
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.381-385
    • /
    • 2005
  • Characterization of particle behavior is becoming more important in performance evaluation of water treatment system as well as in operation of the system because conventional parameter, turbidity has lack of explaining ability on small sized microorganisms such like Cryptosporidium etc. Accordingly, particle counter has been introduced in evaluation and operation of the treatment system. However researches on the relationship between turbidity, particle count and/or different sand/anthracite sizes have not been concurrent. Therefore in this study, the relationship was investigated to improve performance evaluation of sand filter so as to help choosing sand/anthracite effective size as a design parameter of water treatment facility. According to the results, too small or too large effective size media filter reached to turbidity limit(0.1 NTU)earlier. However, because shallow sand layer may cause early breakthrough, the depth of sand layer should be provided enough in order to compromise water quality and productivity.

  • PDF

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.