• Title/Summary/Keyword: sand river

Search Result 700, Processing Time 0.026 seconds

Landform Changes of Terminal Area of the Nagdong River Delta, Korea (낙동강 삼각주 말단의 지형 변화)

  • 오건환
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.67-78
    • /
    • 1999
  • In present, the terminal area of the Nagdong River Delta consists of micro-depositional landforms with sand barrier islands, sand bars and tidal flats which are arranged parallel to the present shoreline, and have rapidly shifted toward sea during last 100 years due to human activities such as construction of estuary dam, industrial complex and residential area. To clarify the landform changes of the area, the author traced the morphologic change pattern based on interpretation of air-photos, topographic maps and old Korean traditional map, and the results are as follows ; Based on the Daedongyeojido, one of the old Korean map, published in 1861, the area including upper part of the delta was underlying by sea level except two larger sand barriers, which means the Nagdong River Delta was not completely formed as the present outline of morphology by 1860s. According to the topographic map(1 :50,000) of 1916, the delta resembled to the present morphology pattern was exposed in 1916, and at this time the area was mainly composed of one sand barrier island, four sand bars and tidal flats, which had slowly elongated southwards before construction of the Nagdong River Estuary Dam in 1987. But after 1987, the area has been rapidly and drastically shifted southwards in arrange with one chain of sand barrier islands (Elsugdo -Myeonghodo-Sinhodo ) and four chains of sand bars (first chain ; Jinwoodo -Daemadeung-Maenggeummeorideung, second chain : Jangjado-Baeghabdeung, third chain ; Saedeung-Namusitdeung, fourth : Doyodeung-Dadaedeung) parallel to shoreline. This rapid landform change of the area is now occurring, and is seemed to ascribed firstly, to the construction of the Nagdong River Estuary Dam on Elsugdo in 1987, the Sinho Industrial Complex on Sinhodo and Myeongji Residential Area on Myeonghodo in 1992, secondly, to artificial alteration of drainage channel and consequential breakdown of former energy system between riverflow and tidal-and wave-energy. From these facts, it is inferred that the landform change pattern of the area will continue until a new equilibrium between the factor available to this energy system is accomplished.

  • PDF

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

Improvement of River Water Quality By Combined Treatment of Sand Filtration and Ozonation(1) - Focusing on Reduction of BOD, COD, SS and Color (모래여과 및 오존처리에 의한 하천수 수질개선 효과 연구(1) - BOD, COD, SS 및 색도 제거 경향 고찰)

  • Choi, Changhee;NamKung, Kyucheol;Youn, Jongwoo;Lee, Chaeyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.813-821
    • /
    • 2011
  • While various aspects affect river water quality, reduction of water flow rate during dry seasons is one of the most significant factors causing severe water pollution in river water environment. The aim of this study is to investigate the feasibility of applying a physicochemical method (sand filtration + ozonation) for improving river water quality within a short period. The parameters analyzed and assessed were $COD_{cr}$, BOD, SS and color. The source river water had a severe pollution level showing COD 8.8~17.2 mg/L (ave. 11.9 mg/L), BOD 4.8~13.3 mg/L (ave. 8.3 mg/L), SS 9.0~22.1 mg/L (ave. 12.8 mg/L) and color 34.4~77.1 degree (ave. 56.5 degree) during the experimental periods. The variation trends showed a relatively low correlation between BOD and COD and between color and COD, while SS showed very low correlation with other parameters. The combined process of sand filtration and ozonation showed averaged removal efficiency of COD 37.2%, BOD 48.4%, SS 60.1% and colority 45.1%, respectively. The marked change of BOD level from 8.3 mg/L to 4.3 mg/L under the experimental conditions in this study implied the improvement of class V to class III set by the river water quality standard in Korea.

Ecological and Geomorphic Fallout of Escalating River Mining Activities: A Review

  • Sk. Rakibul Islam;Rafi Uddin;Miftahul Zannat;Jahangir Alam
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.293-303
    • /
    • 2024
  • River mining, the extraction of sand and gravel from riverbeds, is rising at an alarming rate to keep pace with the increasing demand for construction materials worldwide. The far-reaching deleterious effects of river mining include the lowering of water levels, the augmentation of turbidity, and the erosion of riverbanks, i.e., the disruption of water flow and alteration of river morphology. Aggregates demand, geolocation, and the economy of Bangladesh accelerated illegal extraction. However, limited research has been carried out in this region, despite the severe impact on aquatic and terrestrial ecosystems. To address the corresponding consequences and direct the scope for further research, it is required to evaluate existing studies of other countries having similarities in river morphology, climate, economy, and other related parameters. In this respect, based on previous studies, the effects of sand extraction are particularly prominent in India, having 54 cross-boundary rivers with Bangladesh. The geological profile of numerous rivers in the past decades has been altered due to natural aggregate mining in the Indian subcontinent. Hence, this study focused on relevant research in this region. However, the existing research only focuses on the regional portion of the aforementioned international rivers, which lacks proper assessments of these rivers, taking into account especially the mining effects. Moreover, several global rivers that have similarities with Bangladeshi rivers, considering different parameters, are also included in this study. The findings of this article underline the pressing need for more efficacious measures to address the adverse effects of river mining and safeguard ecosystems and communities globally, especially in the Indian subcontinent, where the situation is particularly vulnerable. For this reason, targeting the aforementioned region, this review highlights the global evidence in assessing the future effects of river mining and the need for further research in this field.

Evaluation of Discharge Capacity of Upper Sand Deposit at the Nakdong River Estuary (낙동강 하구 상부퇴적사질토의 통수능 평가)

  • Jeong, Jin-Yeong;Kim, Tae-Hyung;Im, Eun-Sang;Hwang, Woong-Ki;Kim, Gyu-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.109-119
    • /
    • 2017
  • In this research, it was investigated that whether the upper sand deposited in Nakdong River Estuary Delta region has the role of horizontal drains like sand mat. The results from tests for particle size distribution and permeability of the upper sand deposit did not meet completely the criteria for the horizontal drain material. Thus, numerical analysis has been conducted additionally. Numerical analyses of consolidation of soft soils with upper layer of sand deposit are conducted in both the sand mat with a thickness of 1m and the upper sand deposit with 1, 2, 3, and 4 m of thickness and their results are compared. As the results of numerical analysis, the upper sand deposit with a thickness of 2m or more may play the role of horizontal drains similar to a sand mat. If a PVD is installed, the ability of upper sand deposit as horizontal drains is increased. Form this study, it was concluded that the upper sand deposited in Nakdong River Estuary Delta has the role of horizontal drain.

The Effect on the Properties of Recycled Aggregate Mortar with the Qualites of Waste Concrete (페콘크리트의 품질이 재생모니터의 특성에 미치는 영향)

  • 김효구;김기철;신동인;한천구;박복만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.392-397
    • /
    • 1998
  • In this paper, the properties of cement mortar used recycled aggregate are analyzed and compared with river and crushed sand mortar. Recycled aggregates are made by crushing wasted concrete had various compressive strength, and test items are the properties of fresh mortar, hardened mortar and durability. According to the experimental results, flow, unitweight, strength and durability of cement mortar used recycled aggregates decrease compared with those of river and crushed sand mortar.

  • PDF

Preperties of Mortar Using Ceramic Wastes (도자기 폐기물을 사용한 시멘트 모르터의 특성)

  • 김기형;최재진;최연왕;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-106
    • /
    • 1999
  • In this study, the properties of mortar using ceramic wastes as admixtures and fine aggregates are considered experimentally. The main chemical of ceramic wastes is SiO2 and micro structure of ceramic wastes is porous. Absorption of ceramic wastes is higher than that of river sand and specific gravity is lower than that of river sand. Flow value of mortar using ceramic waste admixture and fine aggregates is increased more or less and the strength of mortar using ceramic wastes as fine aggregates is increased.

  • PDF

A Study on the Characteristics of Water Quality According to Particle Size Distribution of Sediments (하상퇴적물의 입도분포에 따른 수질특성에 관한 연구)

  • Park, Sung-Jin;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • Analysis was done on the particle size distribution of sediments flown into Saemangeum from the Mankyung and Dongjin River. The organic pollutants and heavy metal existing in the sediments were analyzed, which was further used to study the properties of pollution in the sediments according to the particle size distribution. Conclusions shown below were made from these analyses. The particle size distribution showed a big difference between the upriver areas of Mankyung and Dongjin River. Particles under $75{\mu}m$ showed to be around 85% at Dongjin River, while it showed to be around 70% at Mankyung River. This kind of distribution in particle size concluded in greatly affecting the contamination density of the sediments. From the analysis done on the soil type of sediments, deposition in Mankyung River categorized into Silty loam and Sandy loam, where Silty loam covered most of area and deposition in Dongjin River categorized into Sand, Loamy sand, Silty loam, Sandy loam. Considering the weight ratio, the density of contamination of the sediments by particle size at Dongjin and Mankyung River has been analyzed to show that organic pollutants and heavy metals occupy more than 70% of the whole contamination in the range under the particle size of $75{\mu}m$.

A Study on the Morphological Characteristics of the River Mouth in the East Coast and Analysis of It's Causes (동해안 하구 형태의 특성과 그 요인 분석에 관한 연구)

  • 이원환;송재우
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 1975
  • The east coast seems to have remarkably different features from the west and south coast in the geographical, geomorphological, and oceanographical senses. In this paper the auther wishes to introduce some results of investigation morphological characteristics of the river mouth in the east coast an of analysis of it's causes. There are various closing form in river mouth by many causes, but the east coast hs the same closing form(the ratio of closing; roughly 0.18), as well known, by the sand spit, and has not hydrological but littoral drift background. The river of the east coast is proved mature age from hypsometric analysis. The wave and longshore current must be principal factor to be considered, in the analysis of the closing phenomenon owing to littoral drift. The research of the blown sand is considered valuable for the next study of this subject.

  • PDF

A Study on the Channel Planform Change Using Aerial Photographs and Topographic Map in the Mangyoung River (영상자료를 이용한 만경강 하도변화에 관한 연구)

  • Hong, Il;Kang, Joon-Gu;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • River is able to change by various environmental factors. In order to conduct river restoration design, it is necessary to evaluate the stable channel through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study was analyzed abandoned channel formation, changes in the vertical-section and cross-section length of rivers, and micro-landform changes etc using an image analysis technique. Purpose of this research is to evaluates the stable channel through a river channel morphology change from past and present river channels image. Mangyoung river was conducted artificial river maintenance through straight channel consolidation form 1920 to 1930 year. In the result river maintenance, mangyoung river length was decreased by 15 km and abandoned channels of six points were made. Since then, weir was continuously increased to control bed slope and use water. Install of weir was to be the reason of changes on channel width, thalweg, vegetated bar, sand bar, water area. Present Mangyoung river show that water area was temporary increased in upper and middle reach because of weir installation. Total sand bar was only decreased in upper channel. The change of vegetated bar and sand bar was slight recently. In this result, Mangyoung river is inferred to reach stabilized channel although there is some difference to the lower reach.