• Title/Summary/Keyword: sand piles

Search Result 225, Processing Time 0.028 seconds

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

A Study on the Consolidation Behavior of Cohesive Soils Improved by Penetrated and Partly Penetrated Sand Compaction Piles (관통 및 미관통 SCP 개량지반의 압밀거동 비교연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.706-713
    • /
    • 2004
  • This paper introduced an alternative method called USCP (Unpenetrated Sand Compaction Pile). In USCP, the toe of the sand pile does not reach to the lower supporting layer. Hence it is possible to reduce the amount of sand required. However, the degree of improvement could not be the same as SCP. Effective soil improvement, nevertheless, might be possible by combining both methods. In this paper, an improved method that cross over both SCP and USCP was discussed. And in order to verify applicability to a clay layer, consolidation behaviors with different conditions were analyzed and compared using FEM(Finite Element Method) based on the elasto-viscosity theory. From the results, it is concluded for the characteristic of settlement of USCP that the lower degree of replacement and the smaller ratio of penetration($H_d/H$), the larger is the settlement of the lower part of the clay layer comparing to the layer with no improvement. It is also concluded that the ratios of allotment of stress (m) calculated from the final settlements with 30% of degree of replacement are $1.8{\sim}3.3$ for $H_d/H=lOO%,\;1.8{\sim}4.0\;for\;H_d/H=75%,\;and\;1.8{\sim}3.8\;for\;H_d/H=50%$. Besides, the ratio of allotment of stress decreased as the degree of replacement decreased.

  • PDF

Installation of Micro-piles Appropriate to Soil Conditions (지반조건에 따른 마이크로파일 설치방법에 관한 연구)

  • Hwang, Tae-Hyun;Mun, Kyeong-Ryeon;Shin, Yong-Suk;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • This study performs model test to propose the installation method of micro-pile appropriate to various soil conditions such as sand or silt soil. As a result, the crossed installation method (${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a compression displacement of soil in the case of silt exhibiting the punching shear failure. And the inclined installation method (${\theta}$ > $0^{\circ}$ or ${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a lateral displacement of soil in the case of sand to exhibiting the general or local shear failure.

Experimental Performance Evaluation of Complex Behavior Connector by Scaled Model (축소모형에 의한 복합거동 연결체의 실험적 성능 평가)

  • Kim, Kisung;Kang, Hyounhoi;Park, Jeongjun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2017
  • The connector of the complex behavior is to connect the individual piles of the pile to the lower foundation of the oil sand plant where the floating foundation is used. In this study, to verify the shape of a connector of the complex behavior for applying the advantages of existing group pile and piled raft foundation to an oil sand plant, a scaled model was constructed to measure the behavior of the load.

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

Centrifugal Model Test on the Behaviors of Composite Ground Improved with Sand Compaction Piles - Focused on Stress Concentration of SCPs - (모래다짐말뚝으로 개량된 복합지반의 거동에 관한 원심모형실험 - 응력집중을 중심으로 -)

  • Bae, Woo Seok;Oh, Se Wook;Shin, Bang Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.19-24
    • /
    • 2006
  • In this study, centrifugal model tests were performed to evaluate the stress sharing between SCP and surrounding clayey soil at composite ground improved by sand compaction pile with the low area replacement ratio. The SCPs were formed by the "frozen pile" method and pressure cells were installed on pile and surrounding clayey soil to observe stress sharing characteristics. As a result of centrifugal tests, it is shown that the value of stress concentration ratio is mainly affected by area replacement ratio, loading condition and elapsed time.

A Study on the Lateral Behavior of Steel Pipe Piles in Centrifugal Test (원심모형실험에 의한 강관말뚝의 수평거동연구)

  • Kim, Yeong-Su;Seo, In-Sik;Kim, Byeong-Tak
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.5-20
    • /
    • 1996
  • This paper presents results from a series of model tests on laterally loaded single piles with both free-head and free-tip conditions. Model tests, using a centrifuge apparatus (middie size, Mark II in 7.1.7.) were carried out in sand based on the variation of different gravity acceleration and flexural stiffness of the pile and relative density of the soil. The aims of this study are to estimate the effect of gravity acceleratioil, flexordis stiffness, and relative density on the behavior of the pile embedded in Toyoura sand and to evaluate the applicability of a family of the p-y curves which was presented by several reseachers(Mur chison & O'Neill, neese et n., scott, Det worske veritas, nondner). The Program is deviloped by using p-y curves, and it can be used for the calculation of the displacement distri bution, bending moment distribution, and soil reaction distribution. By comparing meas ured responses with predicted one it is shown that the results of the p-y curve equation presented by Murchison & O'Neill and Kondner agreed with the general trend observed by the centrifuge tests much better than the numerical solutions predicted by the other sets of p -y curves.

  • PDF

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

Consolidation Analysis of Soils Improved by Partly Penetrated SCP with Degree of Consolidation and Replacement Ratio (압밀도 및 치환율 변화에 따른 미관통 SCP 지반의 압밀해석)

  • Lee, Kang-Il;Lee, Jae-Wook;Im, Eun-Sang;Ju, Kyung-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • Partially penetrated SCP method is to install sand compaction piles in a soft clay layer not penetrating to the bed layer. In this study, consolidation behaviors of soft grounds improved by both partially and fully penetrated SCP methods are presented. When the replacement ratio is low, the settlement characteristic of the ground improved by fully penetrated SCP method seems to be consistent regardless the degree of consolidation. On the other hands, the ground improved by partially penetrated SCP method appears to decrease depending on the degree of consolidation. In addition, the settlement of upper clay layer is more increasing as the penetration ratio ($H_d/H$) is decreasing. No effect of stress concentration at the lower part of the partially penetrated SCP method is developed. The ratio of stress sharing appears to be almost consistent regardless the degree of consolidation.