• 제목/요약/키워드: sand piles

검색결과 225건 처리시간 0.019초

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향 (Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand)

  • 백규호;이준환;김대홍
    • 한국지반공학회논문집
    • /
    • 제23권8호
    • /
    • pp.69-76
    • /
    • 2007
  • 테이퍼말뚝의 연직거동은 지반의 응력상태와 내부마찰각, 말뚝의 벽면마찰각, 말뚝의 테이퍼 각도에 영향을 받는다. 본 논문에서는 테이퍼 각도가 말뚝의 연직거동에 미치는 영향을 조사하기 위해서 가압토조를 이용한 모형말뚝시험을 실시하였다. 시험결과에 따르면 말뚝의 테이퍼 각도가 커질수록 주면마찰력은 커지고 선단지지력은 감소하였으나, 단위 선단지지력의 경우 보통 상대밀도의 지반에서는 말뚝의 테이퍼 각도에 비례해서 증가하였으나 조밀한 지반에서는 테이퍼 각도에 따라 감소하였다. 그리고 말뚝의 전체지지력에 대한 주면마찰력의 비율은 테이퍼 각도가 커짐에 따라 그리고 지반의 상대밀도가 작아짐에 따라 증가하는 경향을 보였다. 또한 말뚝의 단위 체적당 전체지지력은 지반이 느슨할 때는 테이퍼 각도에 따라 증가했지만 조밀한 지반에서는 테이퍼 각도에 따라 감소하였다. 따라서 테이퍼말뚝은 조밀한 지반보다는 느슨한 지반에서 더 경제성이 있는 것으로 나타났다.

모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동 (Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles)

  • 유남재;정길수;박병수;김경수
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교 (Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio)

  • 유승경;조성민;김지용;심민보
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구 (Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio)

  • 유승경
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.253-261
    • /
    • 2003
  • 샌드드레인공법(SD공법)이나 고치환율의 샌드콤팩션파일공법(SCP공법)과 비교하여 저치환율SCP공법에 의해 개량된 복합지반의 역학거동은 모래말뚝과 점토지반 양방의 역학적 상호작용의 영향을 보다 현저하게 받는다. 따라서 본 공법의 적용에 있어서 침하저감효과나 모래말뚝 사이의 점토의 강도증가 등을 정확히 평가하기 위해서는 복합지반 내부에서의 모래말뚝과 점토와의 역학적 상호작용을 해명하여야 할 필요성이 있다. 본 연구에서는 저치환율의 모래말뚝이 타설된 복합지반에 대한 일련의 모형실험을 통하여 압밀중에 발생되는 모래말뚝과 점토 각각의 역학거동과 복합지반 내부에 대한 응력분담거동에 대하여 고찰하였다.

저치환율 SCP에 의한 복합지반의 응력분담 메커니즘에 관한 연구 (Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio)

  • 유승경;송정보;홍원표;윤길림
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.197-202
    • /
    • 2004
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

  • PDF

저치환율 SCP에 의한 복합지반의 압밀 과정중에 발생하는 응력분담거동과 그 메커니즘 (Stress Sharing Behaviors and its Mechanism During Consolidation Process of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio)

  • 유승경
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.301-310
    • /
    • 2003
  • 저치환율 샌드콤팩션파일공법(SCP공법)을 합리적으로 설계하기 위해서는 압밀중에 발생하는 복합지반 내부의 모래말뚝과 점토 양자의 상호역학거동을 정확히 파악하고 그 메커니즘을 이해하여야 할 필요성이 있다. 본 논문에서는 저치환율 SCP공법에 의해 개량된 복합지반의 압밀중에 발생하는 역학적 상호작용을 규명하기 위하여 일련의 수치해석을 실시하였다. 수치해석은 탄점소성 압밀 유한요소법을 적용하였으며, 그에 대한 신뢰성은 SCP에 의해 개량된 복합지반의 압밀거동에 대한 일련의 모형실험 결과와의 비교를 통해 검증할 수 있었다. 또한, 수치해석의 결과들로부터 저치환율의 모래말뚝이 타설된 복합지반의 모래말뚝과 점토에 대해 압밀중에 발생되는 각각의 역학거동과 복합지반 내부에 대한 응력분담 메커니즘에 대하여 규명하였다.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.