• Title/Summary/Keyword: sand permeability

Search Result 249, Processing Time 0.023 seconds

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

A Study on Utilization of Recycled Aggregates as Lateral Drain for Soft Ground Improvemnet (연약지반 개량을 위한 수평배수층 재료로 순환골재의 적용 방안에 대한 연구)

  • Lee, Jong-Yoon;Chun, Hae-Pyo;Jeong, Woo-Chul;Lim, Hae-Sic
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.5-15
    • /
    • 2008
  • The purpose of this study is to examine the validity of recycled aggregates (RAs) as a substitute for Sand-Mat material for soft ground improvement in the housing site development. To evaluate the possibility of RAs as a substitute for sand mat material, first of all, the criteria and regulations related with the quality of lateral drain layer were collected and checked. Secondly, both of the properties of RAs were compared with the properties of natural sand for the lateral drain layer. The material properties related to coefficient of permeability, pressure at-rest state and so on satisfied most standards. On the basis of the test results, RAs were used to the construction site as lateral drain layer. Accordingly, if the quality of RAs can be managed well, the application of these RAs as lateral drain layer to replace natural sand was highly effective. Also, based on cost analysis of two materials, RAs are proved to be very competitive.

Laboratory Evaluation of Soil Permeability for Sand Using Biot's Acoustic Wave Propagation Theory (Biot 음향 전파 이론을 이용한 실내 사질 시료의 투수계수 산정)

  • Kim, Jin-Won;Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.5-12
    • /
    • 2008
  • Biot proposed the frequency dependent formulation for the propagation of elastic waves in saturated media based on the coupled theory mixtures. Based on Biot theory, a special frequency called 'the characteristic frequency' contains unique information of the permeability of soils. The characteristic frequency is measured from I/Q (inverse quality factor) versus frequency curve by an acoustic sweep test, and the permeability of soils is computed from Biot equation. In this paper, laboratory tests are performed at The University of Mississippi using a large test box. The measured characteristic frequency is consistently obtained at 3500 Hz for mortar sands. The computed permeability of mortar sands based on Biot equation turned out 2.01 $10^{-4}m/sec$, while the permeability from the laboratory constant head test turned out 1.49 $10^{-4}m/sec$. This paper addresses the theoretical background and experimental procedure of this technique.

The Development of the Hydrophobic - Low Viscosity Filling Material for the Surface Treatment for Pavement Preventive Maintenance (예방적 유지보수를 위한 소수성 저점도 AP 표면처리재 개발)

  • Choi, Jun Seong;Kim, Jo Sun
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : Surface treatment is a favorable method in the pavement preventive maintenance. This study (Part I) aimed to develop the low viscosity filling material for waterproof characteristics and high penetrable and weather resistance, and a series of companion study (Part II) presents the coating characteristics and performance analysis using field and lab tests. METHODS : Hydrophobic characteristics of the advanced surface treatment material are observed and measured the filling depth and the permeability for sand and asphalt pavement specimen using the water absorption test and permeability test, X-RAY CT test. Color difference for the weather resistance using ultraviolet ray accelerated weathering test is compared with asphalt pavement specimens. RESULTS : The developed material shows the decreased water absorption and increased impermeable effect because of the hydrophobic characteristics. It is found that the filling depth is about 6mm and weather resistance is better than asphalt pavement specimen. CONCLUSIONS : The advanced hydrophobic - low viscosity filling treatment material is developed in this study (Part I) to improve the waterproof characteristics and high filling capacity and weather resistance for the pavement preventive maintenance.

Design Example of Gravel Mat for Horizontal Drains (쇄석Mat를 이용한 수평배수공법 설계사례)

  • Jeong, Kyeong-Han;Lee, Young-Keun;Lee, See-Woo;Kim, Jae-Sung;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.174-187
    • /
    • 2005
  • Recently, because of environment, cost, supply and demand factors, though applying sea-sand as horizontal drains is getting difficult that usage of Gravel has been growing in large size of construction sites, Study on engineering properties and behavior characteristics of Gravel stratum is not thoroughgoing enough. We have applied Gravel Mat as the horizontal drains in O O construction site. We also conducted several field tests such as Material property test, Geosynthetics damage test with Repeated load, Discharge capacity test performed by inflow of upper soil and In-situ PBD Penetration test to review the application of Gravel Mat. Test results show that Gravel Mat is not only advantageous in Trafficability and Water drainage by Consolidation due to its great Internal friction angle and Permeability, but also easy to penetrate with Mandrel and has great discharge capacity and guarantee of the stability against geosynthetics damage at the same time. With these benefits Gravel Mat shows great application in fields.

  • PDF

The Application of Piezocone Penetration Test at Inchon International Airport (인천국제공항지역의 피에조콘조사와 결과의 적용)

  • 김종국;성기광;김학중;김영웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • Piezocone Penetration Test has been performed in the soft ground over the site preparation area at Inchon International Airport(IIA). With the pore pressure dissipation test results, the changes in the permeability and the coefficient of consolidation in clayey soil were checked and the differences of the undrained shear stength verified the soft ground improvement effect from vane test and piezocone test both before and after the improvement. From the results, thin sand seam was found and this caused a big difference in the coefficient of permeability and consolidation. The coefficient of consolidation was high in the upper marine deposit and relatively low in lower marine deposit. It was found that the reduction of void ratio by preloading resulted in the reduction of coefficient of consolidation after the ground improvement. In addition, there were some variations of undrained shear strength when the number of 15 or 18 was used as the coefficient of piezocone(Nkt). However, when the average value of undrained shear strength calculated using Nkt=10 was applied, the result indicated the similar average value with the result of vane test and the increasing rate of strength( Δsu/Δ$\sigma$≒0.38) also showed the similar distribution.

  • PDF

Development of Self Waterproofing Admixture for Concrete Using Inorganic Admixture (무기질 혼화재를 이용한 콘크리트용 구체방수재의 개발)

  • 한천구;박상준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.527-535
    • /
    • 2001
  • The watertight property of concrete was examined, that is affected by the sort of self waterproofing admixture and the change of the addition ratio of admixture. Various self waterproofing admixtures were made by changing the mixing ratio of silica fume, zinc stearate and silica sand. The result showed as follows. As the adding ratio of self waterproofing admixture increases, the fluidity is increased and the setting time is delayed. While compressive strength of concrete with self waterproofing admixture A which is currently using is increased until the adding ratio of self waterproofing admixture reached 18kg/㎥ and decreased over 24 kg/㎥, that with self waterproofing admixture B, C and D which are developed are higher than that of A. Absorption is decreased as the adding ratio of self waterproofing admixture and the increasing of age in concrete. Especially, when self waterproofing admixture has a lot of zinc stearate, absorption is decreased manifestly. The property of permeability is similar to that of absorption; permeability is decreased as the adding ratio of self waterproofing admixture and the increasing of age in concrete. Consequently, when the ratio of silica fume, zinc stearate and silica sand in self waterproofing admixture is 1 : 2 : 1 and addition ratio of self waterproofing admixture is 6kg/㎥, the high quality concrete is obtained comparing to the concrete with existent self waterproofing admixture.

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

Creep Characteristics of Weathered Soils and Application of Singh-Mitchell's Creep Formula (풍화토의 크리프 특성 및 Singh-Mitchell 크리프 방정식 적용성 검토)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Jun;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.69-76
    • /
    • 2009
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In Korea, weathered soil is abundant and occupies around one-third of the country. Weathered soil is visually described as a sandy or gravelley soil, but the behavior is quite different from the behavior of usual sand and gravel. In particular, the permeability of weathered soil is similar to sand, but the durability of settlement is similar to clay. Therefore analysis of time-dependent behavior of weathered soil is very important. In this study, Creep tests with weathered soils were carried out under constant principal stress differences of various stress levels which were experimentally obtained by triaxial compression test. The results of these tests showed the creep behavior for which the deformation increased with time, and the results are consistent with phenomenological model by creep equation of Singh-Mitchell.

An Empirical Study on the Characteristics of Pore Water Pressure Reaction in Colluvium Model (붕적층내의 간극수압 반응에 관한 실험적 연구)

  • 정두영;최길렬
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.59-70
    • /
    • 1992
  • This work is to study experimentally the measurment of pore air pressure according to rainfall in colluvium model and the characteristics of pore water pressure according to increasement of artesian ground water head. After modeling a geological feature of the Tertiary formation, the experiment was performed about sixty times on three kinds of soil. This experimental results showed the variation of pore water and pore air pressures with time, the change of void ratio and appling pressure head in the nonsaturated soil. It can be also expressed by the final pore water and the air reaction ratios and then formularizing the relationship between the permeability coefficient and the void ratio. In the results of this experiment, the patterns of the pore water pressure reaction are classified by the step-type and the wave-type, and the time-lag to reach final point of pore water pressure is in order sand, sandy silt and clayey sand.

  • PDF