• Title/Summary/Keyword: sand fabric

Search Result 25, Processing Time 0.022 seconds

Evaluation of Mechanical Properties and Durability of Fabric Concrete Binder for Emergency Repair (기상재해 대응 긴급보수용 패브릭 콘크리트 혼합물의 역학적 특성 및 내구성능 평가)

  • Jeon, Sang-Min;Jo, Sung-Mun;Oh, Ri-On;Kim, Hwang-Hee;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.23-31
    • /
    • 2020
  • Recently, meteorological disasters have been increasing by climate change, excessive rainfall, and landslide. The purpose is to develop new fabric concrete that can prevent and recover from damages because some of areas are vulnerable to meteorological disaster. Specifically, this technology can minimize time and space constraint when repairing the concrete structure and installing a formwork. The structure of fabric concrete is a mixture of fabric concrete and a high-speed hardened cement, Silica sand, wollastonite mineral fiber, fabric material and waterproof PVC fabric. In this study, the ratio of mechanical properties and durability of the fabric concrete mixture was evaluated by deriving the binder: silica sand mix ratio of the fabric concrete mixture and substituting part of the cement amount with wollastonite mineral fiber. Best binder in performance evaluation: Silica sand mix ratio is 6: 4 and the target mechanical performance and durability are the best when over 15% wollastonite binder is replaced by silicate mineral fiber.

Evaluation of particulate removal in slow sand filtration processes (완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가)

  • Kim, Seong-Su;Bae, Chul-Ho;Park, No-Suk;Kang, Suk-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Compressibility of Changi sand in K0 consolidation

  • Wanatowski, D.;Chu, J.;Gan, C.L.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.241-257
    • /
    • 2009
  • The one-dimensional compressibility of sand is an important property for the estimation of settlement or deformation of sand deposits. The $K_0$ value of sand is also an important design parameter. Experimental results are presented in this paper to study the compressibility of sand in $K_0$ consolidation tests. The $K_0$ consolidation tests were carried out using a triaxial cell and a plane-strain apparatus. Specimens prepared using both the moist tamping and the water sedimentation methods were tested. The testing data demonstrate that the type of testing apparatus does not affect the $K_0$ measurement if proper boundary conditions are imposed in the tests. The data also show that the compressibility and the $K_0$ value of loose sand specimens prepared using the moist tamping method are very sensitive to the variation of void ratio. The $K_0$ values measured from these tests do not agree with the $K_0$ values calculated from Jaky's equation. The compressibility and $K_0$ values of sand obtained from tests on specimens prepared using different preparation methods are different which may reflect the influence of soil fabrics or structures on the one dimensional compression behavior of sand.

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang;Dirk A. de Lange;Huan Wang;Amin Askarinejad
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.431-441
    • /
    • 2024
  • A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

A Case Study on the Creating Artificial Planting Ground on the Waste Landfill Sites -In Case of the Bank Isolated Section Planting Layer at the Landfills of Satellite Cities of Seoul- (폐기물매립지 인공식재지반 조성 사례연구 -수도권매립지 제방이격구간 식재층을 대상으로-)

  • 조주형;이재근
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.131-139
    • /
    • 2001
  • This paper aims at surveying through case studies the planting possibility on the interval artificial ground between the bank and the core landfill of the first section of works in the SUDOKWON Landfill area landfill area which was completed, followed by the layer-on-layer landfill process involving the latch or sealing layer against emitting landfill gas from the reclaimed waste. The survey results are as follows; 1. The layers of the artificial planting ground on the landfill were established on the basis of top-on-top procedure for a waste layer, a topping soil layer (T=50cm), a gas blocking layer (broken stones T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a planting layer (T=90cm+), a top mound (T=2m). 2. Since no direct damage on the planting layer affected by the landfill gas was detected, planting is found to be still possible and successful except the severely unequal subsidence portion. 3. The mortality rate is discovered different on different trees: Pinus thunbergii (H3.0$\times$W1.0m) 11.25%, Pinus thunbergii (H2.5$\times$W0.8m) 4.73%, Koelreuteira paniculata 8.67%, Hibiscus syriacus 5.68%, Deutzia parviflora 6.50%, Forsythia koreana 8.17%, Rho. yedoense v. poukhanese 32.22%, and Spiraea pru v. symplicifolia 18.89%; although the last two of which are generally considered to have a strong generic growing character, they are subject to be weakened when exposed to the contaminated microclimate of the site like landfill gas. 4. The damage rates, on Pinus thunbergii, Koelreuteria paniculata, Hibiscus syracus, Forsythia koreana, Deutzia parviflora, Rho. yedoense v. poukhanense were shown to decrease to 7.31-17.69% in the second check (June 2000) lower than 5.77-46.92% in the first examination (June 1999), whereas the damage on Spiraea pru v. symplicifolia relatively increased. It is believed that preparatory method of the air pollution, change of temperature, odor by emitting landfill gas, and minute dust from vehicles should be made, and a research on this matter will be conducted in the near future.

  • PDF

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.