• Title/Summary/Keyword: sand bar movement

Search Result 8, Processing Time 0.026 seconds

Geomorphological Properties and Changes on River-Mouth Bar at Song-cheon River (송천 하구 사주의 지형 특성과 변화 과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.693-706
    • /
    • 2011
  • The Geomorphological properties and ages of river-mouth bar at Song-cheon River in the East Coast of Korea, Yeongdeok-gun, Gyeongbuk Province are estimated, and the long-term and short-term changing processes and causes are analyzed. Sand grains of the bar near the coastline show the finer trends from south to north and these can be attributed to the northward movement of waves and long-shore currents. The absolute ages of bar and nearby coastal sand dune are less than approximately 100 years ago, indicating that the bar has experienced the active geomorphological changes. While the inlet located at south part of the bar between 1971 and 1995, the inlet has located at north or middle part since 1995. These may caused by the changes of movement directions of waves and long-shore currents due to the apparent northward movements of winds and currents. In short-term, the higher elevation, larger area, simpler landform relief and more variable location of inlet and morphology of bar can be observed between September and March due to the dominance of sedimentary processes by wave and wind processes.

Sandy Sediment Transport Mechanism on Tidal Sand Bodies, West Coast of Korea (해양(조수환경) 사립퇴적물의 이동기작에 관한 연구 - 한국 서해 만경강.동진강 하구 해역 -)

  • Yong Ahn Park;Hyo Jin Kang;Y.I. Song
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • Sand bars associated with strong tidal currents are well developed in the subtidal zone near the Kokunsan islands. Tidal currents measured at sand bar in the area show an asymmetry in magnitude between flood and ebb currents. At the southern flank of the sand bar the currents are flood-dominant whereas the currents are ebb-dominant at the northern flank. The asymmetry is more distinctive as the currents become stronger during spring tide. Moreover, the flood-dominance along the southern flank is stronger than the ebb-dominance along the northern flank. Thus the flood current is more affective to the sand bar. The sandy bottom sediment is mostly transported as bedload by the tidal currents. The magnitude asymmetry of the tidal currents results in a net sediment movement in one direction. The direction is onshore in the south and offshore in the north, which may result in a net counterlookwise rotation of the sands around the sand bar. However, the sand bar may migrate towards onshore due to the more affective flood current in the south. The irregular V-shaped outline of the sand bar in the south also seem to reflect the strong effect of flood current.

  • PDF

Development of a Numerical Model to Analyze the Formation and Development Process of River Mouth Bars (하구사주의 생성 및 발달을 해석하기 위한 수치모델의 개발)

  • Kim, Yeon-Joong;Woo, Joung-Woon;Yoon, Jong-Sung;Kim, Myoung-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.308-320
    • /
    • 2021
  • An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.

Monitoring of the Estuary Sand Bar Related with Tidal Inlet in Namdaecheon Stream using Landsat Imagery (Landsat 위성 영상을 활용한 강원도 양양군 남대천 연안 하구사주 갯터짐 환경 모니터링)

  • Jang, Jiwon;Eom, Jinah;Cheong, Daekyo;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.481-493
    • /
    • 2017
  • Estuary sand bar of Namdaecheon Stream is located in Yangyang-gun, Gangwon-do in Korea. This unique place is situated between end of Namdaecheon Stream and East Sea. It is an important environment area of the global ecosystem from the transition zone of land and marine environments by forming a variety of coastal circumstance. Some endemic species should be protected which is appearing in the Namdaecheon Stream because of preservation for future generations. Especially, the salmon return to this stream as adults in order to breed which is more than 70 % of the salmon in Korea peninsular. The monitoring of estuary sand bar is need to analyze ecological environment and sustainable development with time. First of all we represents a different shape of estuary sand bar of Namdaecheon Stream from 1984 to 2015 using Landsat satellite imagery series. Particularly movement of the "tidal inlet" is most important factor to investigate the condition of the change for estuary sand bar. The location of tidal inlet is compared with precipitation, height of tide and oceanic current data according to time variation.

Application of Remote Sensing and GIS technology for monitoring coastal changes in estuary area of the Red river system, Vietnam

  • Lan, Pham Thi;Son, Tong Si;Gunasekara, Kavinda;Nhan, Nguyen Thi;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.529-538
    • /
    • 2013
  • Coastline is the most dynamic part of seascape since its shape is affected by various factors. Coastal zone is an area with immense geological, geomorphological and ecological interest. Monitoring coastal change is very important for safe navigation, coastal resource management. This paper shows a result of monitoring coastal morphological changes using Remote Sensing and GIS. Study was carried out to obtain intensity of erosion, deposition and sand bar movement in the Red River Delta. Satellite images of ALOS/AVNIR-2 and Landsat were used for the monitoring of coastal morphological changes over the period of 1975 to 2009. Band rationing and threshold technique was used for the coastline extraction. Tidal levels at the time of image acquisition varied from -0.89m to 2.87m. Therefore, coastline from another image at a different tidal level in the same year was considered to get the corrected coastline by interpolation technique. A series of points were generated along the coastal line from 1975 image and were established as reference points to see the change in later periods. The changes were measured in Euclidean distances from these reference points. Positive values represented deposition to the sea and negative values are erosion. The result showed that the Red river delta area expanded to the sea 3500m in Red river mouth, and 2873m in Thai Binh river mouth from 1975 to 2009. The erosion process occurred continuously from 1975 up to now with the average magnitude 23.77m/year from 1975 to 1989 and 7.85m/year from 2001 to 2009 in Giao Thuy area. From 1975 to 2009, total 1095.2ha of settlement area was eroded by sea. On the other hand, land expanded to the sea in 4786.24ha of mangrove and 1673.98ha of aquaculture.

Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils (액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석)

  • Hwang, Jae-Ik;Kim, Chang-Yeob;Chung, Choong-Ki;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF

The Characteristic of Deposition in Nakdong estuary considering Tide and River discharge (조석과 하천수 유입을 고려한 낙동강 하구역의 퇴적특성)

  • Jeon, Yong-Ho;Ryu, Cheong-Ro;Lee, In-Cheol;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • Nakdong estuary is located at south-eastern coast of the Korea. A lot of sediment from upper river were deposited at this area. It has cause many problem such as changes in topography and tidal current. Changes of characteristic of deposition were cause by topographic change of nakdong estuary. Analyzing and evaluating data, we could predict the direction of movement of the sand bar and the growth toward south-eastern of Nakdong estuary. It was caused by decreasing river discharge after construction of Nakdong-kang barrage.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.