• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.025 seconds

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

Evaluation of Protective Performance of Protection Materials for Field and Structural Body by Ignition of 155mm Artillery Shell and C-4 Explosive (155mm 포탄 및 C-4 90kg 기폭에 의한 야전구축 방호자재 및 구조체용 신방호자재의 방호성능 평가)

  • Lee, In-Cheol;Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Suk-Bong;Hong, Won-Hee;Kim, Gyu-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.493-500
    • /
    • 2013
  • In this study, it was evaluated the protective performance of the protection material for filed of the army by impact of fragment from the explosion of 155mm artillery shell to propose the improvement items. And it was evaluated the protection materials for structural boby such as corrugated steel plate, concrete block, prevention paint of explosion, aluminum foam and concrete T-wall by impact of fragment of 155mm artillery shells and explosion-induced pressure of C-4 explosive. As a result, protective performance of the existing protective material was superior but reinforcement is necessary for secondary damage because sand is leaking. The protective performance of new protective materials was greater than existing protective materials. And it can be used for protective materials.

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Visual Preference of the Methods for River Embankment - The Case of Dongchon in Gwangyang - (하천호안공법의 시각적 선호도 - 광양시 동천을 사례로 -)

  • Lee Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.12-22
    • /
    • 2006
  • The purpose of this study is to evaluate visual preferences of the methods for river embankment based on seasonal changes and to reveal the relationship between visual preference and effective factors, which are the physical and esthetic elements inside the river. For this research seven river embankment methods including concrete block, concrete wall, gabion, and vegetated concrete block were selected in Dongchon of Gwangyang. Twenty-eight pictures by the four pictures of each embankment method based on seasonal changes, the winter and summer of the first and second years after construction were used for a photo-questionnaire by 49 participants. In the analysis of the relationship between visual preference and effective factors, the independent variables included eight factors: form of the material, harmony with the surroundings, the cleanness of river floor, the green area of embankment methods, the water area in river floor, the stone and sand area in river floor, the planting area in river floor, and the area of embankment itself. The result of this study are as follows. First, visual preference in summer was higher than in winter, and the summer landscape of the second you scored the highest value for visual preference. Second, similarly to the way the vegetated concrete block produced a green effect, cobblestone and gabion embankments made of natural materials scored higher than others, whereas the concrete retaining wall scored the lowest of all methods because of it's artificiality. Third, the seven independent variables, except form of the material, are proved statistically significant at the 5% level. The water area in river floor, harmony with the surroundings, the planting area in river floor, and the cleanness of the river floor were revealed as more effective factors influencing visual preference. The research results suggest that the riverscape has to be controlled in terms of seasonal change and embankment methods. Natural materials and green effects in embankment methods are more important for increasing landscape preference, and the landscape factors inside a river should also be considered important variables. It is recommended that advanced study on other factors affecting visual preference of the riverscape be carried out to support this research.

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF

The Experimental Study on the Plaster mortar using Recycled fine aggregate (순환잔골재를 사용한 미장용 모르타르에 관한 실험적 연구)

  • Lee, Dae-Geun;Han, Sang-Il;Choi, Duck-Jin;Kang, Cheol;Kim, Jun-Seok;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.473-476
    • /
    • 2008
  • The use of the recycled fine aggregate to the material of structural concrete is not easy currently because there are some problems, such as the difficulty of quality control and the badness of chemical and physical property other than river sand, crushed fine aggregate. To use of recycled fine aggregate, many researches on the recycling of recycled fine aggregate have been studying until today. However, the result of the research is little except for some results. Therefore, the purpose of this study is to confirm the possibility of use of recycled fine aggregate for raw material of plaster mortar. In this study, various tests were performed such as flow, air content, unit weight, bond strength, and compressive strength test to evaluate the effect according to the substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength improved with the increase of replacement ratio of recycled fine aggregate. In the other side, flow and air content are decreased according to replacement ratio of recycled fine aggregate. The result of this study could be used as the basic data for the recycling of recycled fine aggregate.

  • PDF

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

Property Evaluation of the Concrete Replacing 5-13mm Recycled Coarse Aggregates (5~13mm 입도분급 순환 굵은 골재 혼합사용에 따른 콘크리트의 특성평가)

  • Han, Min-Cheol;Song, Young-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • This paper is to investigate experimentally the effect of substitution of recycled coarse aggregate(RCA) under 13mm on the engineering properties of the concrete using gap graded coarse aggregates. Concretes with 0.4 of water to cement ratio(W/C) were fabricated to achieve 30MPa of design strength with coarse aggregate over 13mm in size with the maximum size of 25mm. RCA was substituted for coarse aggregate over 13mm from 10% to 50% and crushed coarse aggregate under 13mm was also substituted for coarse aggregate over 13mm from 20% to 40%, respectively. Test results indicated that the replacement of RCA up to 20% resulted in an increase of fluidity and strength. It also caused a decrease in the drying shrinkage due to dense packing effect by achieving continuous grading of mixed aggregates. For practical application of RCA, when properly substituted, the use of RCA enabled the concrete to reduce water contents and sand to aggregate ratio in mixing design stage of the concrete. And, it can also enhance the compressive strength of the concrete.

Prediction of Concrete Corrosion using Electrodchemical Technique (전기화학적인 콘크리트 부식의 예측)

  • 이종권;박지환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.80-83
    • /
    • 2002
  • The effect of chloride content on the corrosion of reinforced bar in concrete was studied. The mixing ratio of the concrete was 1 : 1.78 : 5.35 : 4.73 (water : content : ballast : sand). The studied chloride content was in the range of 0∼3.5 wt%. The corrosion potentials were measured in every week for two years. The copper-copper sulfate electrode (CSE) was employed as a reference electrode. After two years, the corroded structure was examined and compared to measured corrosion potential. Any visible difference was founded in the specimen located indoor and outdoor. The chloride concentration enhanced rusting and reinforced bar, shifting the potential to active range. The results showed good argument with Van daveer criteria. In 3.5 wt% chloride, the potential shifted belong -350 mV after 58week. Specimen in 1.75 wt% chloride, showed the potential between -200 mV∼-350 mV. However those in free chloride solution maintained above -200 mV for the studied period. It can the concluded that the chloride enhanced corrosion of rebar in concrete and the electrochemical potential can be a promising corrosion monitoring technique.

  • PDF

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.