• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.039 seconds

Effect of siliceous powder's particle size on the workability and strength of UHPC (석영미분말의 입자크기가 UHPC의 유동성 및 강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.441-444
    • /
    • 2008
  • Ultra high performance concrete (UHPC) in this study is composed of sand, cement, silica fume, siliceous powder, superplasticizer and steel fiber. UHPC is composed of fine mineral particles below 0.5mm in diameter. In general, siliceous powder improves the mechanical properties of concrete by physical and chemical effect. Physical effect is related with filling interior voids which weaken the mechanical properties and chemical effect with reaction of $SiO_2$ with cement hydrates in a condition of high temperature and pressure. We evaluated the effect of siliceous powder's particle size on the mechanical properties of ultra high performance concrete in air pressure and $90^{\circ}C$ steam curing condition. siliceous powder's particle size in this study is in the range of $2{\mu}m$ to $26{\mu}m$. Fluidity in a fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in a hardened concrete was evaluated. We could find out that the smaller siliceous powder's particle size is, the better the fluidity and strength properties.

  • PDF

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

Quantification of Localized Fracture Mechanism of Recycled Aggregate Concrete in Compression using Acoustic Emission Technique (음향방출기법을 이용한 순환골재 콘크리트의 압축파괴 기구의 정량화)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.87-94
    • /
    • 2007
  • Reuse of recycled aggregate from demolished concrete structure is beneficial and necessary from the viewpoint of environmental preservation and effective utilization of resources. The most important mechanical properties of recycled aggregate concrete (RAC) are the compressive strength, the tensile and the flexural strengths, the bond strength and the elastic modulus of such concrete. In particular, the stress-strain relation and fracture process of RAC in compression is especially important in theoretical and numerical analysis as well as engineering design of RAC structures. In this paper, to clarify the characteristics of fracture process in RAC, acoustic emission(AE) method is applied to detect micro-cracking in concrete under compression. From AE parameters, it is found that cracking and fracture behaviors in recycled aggregate concrete fairly differ from that of normal and recycled sand concrete.

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

A Study on the Gradation Effect of the Property of Roller Compacted Concrete Pavement (골재 입도분포가 도로포장용 롤러전압 콘크리트에 미치는 영향 연구)

  • Song, Si Hoon;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS : The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.

A Study on Changes in Heavy Metal Contents in Concrete Prepared Using Coal Ashes (석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구)

  • Lee, Jinwon;Choi, Seung-Hyun;Kim, Kangjoo;Kim, Seok-Hwi;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • In many countries, recycling coal ashes as backfill materials for subsided lands, abandoned mine tunnels, and road pipeline constructions by making low-strength concretes with minimal amounts of cement is frequently considered for massive treatment of coal ashes. This study investigates the variation of heavy metals in the concrete test pieces prepared for the cases of using only Portland cement as binding material, fly ash as a replacement of the cement, sand as aggregates, and disposed ashes in the ash ponds as a replacement of aggregates. Heavy metal contents were measured based on the aqua regia extraction technique following the Korean Standard for Fair Testing of Soil Contamination and the influences of each materials on the total heavy metal contents were also assessed. Results show that the cement has the highest Cu, Pb, and Zn concentrations than any other materials. Therefore, the test pieces show significant concentration decreases for those metals when the cement was replaced by fly ash. Ponded ash shows low concentrations relative to fly ash in most of the parameters but shows higher Cu and Ni, and lower Pb levels than the sand aggregate. In overall, heavy metal levels of the test pieces are regulated by mixing among the used materials. Test pieces prepared during this study always show concentrations much lower than the Worrisome Level of Soil Contamination (Area 1), which was designated by the Soil Environment Conservation Act of Korea.

FEM Analysis of Controlled Low Strength Materials for Underground Facility with Bottom Ash (바톰애쉬를 이용한 지하매설관용 유동성뒤채움재의 FEM 해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2368-2373
    • /
    • 2012
  • In this research, finite element method was carried out to evaluate the defomation of pipe and surface displacement for backfill of underground ficility. Various conditions for analysis were employer, including two different pipes(PE and concrete pipe), two different excavation depth(60cm and 150cm) and width(1.5D and 2D), a regular sand backfill, and four different flowable backfills. The vertical deformation of 60 cm diameter for PE was measured three times more than that of 30 cm diameter. The measured deformations for regular backfill and four flowable backfills were 0.320mm, and 0.135mm to 0.155mm, respectively. It ratio was around 40%. In case of 30cm diameter of concrete pipe, the measured vertical defomation was around 0.004mm for all the backfill materials. In case of installation depth, the effect of flowable backfill for flexible pipe is better than for rigid pipe. There is little effect on the deformation of concrete pipe with regular sand backfill and flowable backfill.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.