• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.023 seconds

Effect of aggregate type on heated self-compacting concrete

  • Fathi, Hamoon;Lameie, Tina
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this study, two types of aggregate were used for making self-compacting concrete. Standard cubic specimens were exposed to different temperatures. Seventy-two standard cylindrical specimens ($150{\times}300mm$) and Seventy-two cubic specimens (150 mm) were tested. Compressive strengths of the manufactured specimens at $23^{\circ}C$ were about 33 MPa to 40 MPa. The variable parameters among the self-compacting concrete specimens were of sand stone type. The specimens were exposed to 23, 100, 200, 400, 600, and $800^{\circ}C$ and their mechanical specifications were controlled. The heated specimens were subjected to the unconfined compression test with a quasi-static loading rate. The corresponding stress-strain curves and modulus of elasticity were compared. The results showed that, at higher temperatures, Scoria aggregate showed less sensitivity than ordinary aggregate. The concrete made with Scoria aggregate exhibited less strain. The heated self-compacting concrete had similar slopes before and after the peak. In fact, increasing heat produced gradual symmetrical stress-strain diagram span.

Strength Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 강도 특성)

  • Sung, Chan-Yong;Back, Seung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate the strength properties of polymer concrete using recycled aggre-gate. The compressive strength, splitting tensile strength, flexural strength and pulse velocity of polymer concrete were decreased with increasing the content of recycled aggregate. At the curing age of 7days, the compressive strength was $80.5\~88.3$ MPa, the splitting tensile strength was $9.1\~10.6$ MPa, the flexural strength was $19.2\~21.5$ MPa and the pulse velocity was $3,931\~4,041$ m/s, respectively. Also, the compressive strength, splitting tensile strength, flexural strength and pulse velocity of concrete using recycled fine aggregate were higher than that of the silica sand. Therefore, these recycled aggregate polymer concretes were estimated for high strength concrete without major problem.

An Experimental Study on Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 2000
  • This study is performed to evaluate the elastic properties of rice straw ash concrete using reices straw ash, cement, natural sand, gravel, and superplasticizer. The following conclusions are drawn ; The ultrasonic pulse velicity is in the range of 4,084 ~4,336m/s , which has showed about the same compared to that of the normla cement concrete. The highest ultrasonic pulse velocity is showed by 5 % rice straw ash filled rice straw ash concrete. The dynamic and static modulus of elasticity is in the range of 294 $\times$10$^3$ ~347 $\times$ 10$^3$ and 266 $\times$10$^3$~328 $\times$10$^3$kgf/㎤ , respectively. It is showed about the same compared to that of the normal cement concrete. The Poisson's number of rice straw ash concrete is less than that of the normal cement concrete.

  • PDF

Influence of the Mixing Factor on the Properties of Concrete Used Artificial Lightweight Aggregates (인공경량골재를 사용한 콘크리트의 물성에 미치는 배합요인의 영향)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.73-77
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can be used widely for various purpose in the archtectural and civil structures. This paper were examined the influence of the mixing factor on the fresh and hardened properties of lightweight concrete that are used 2types of the differences properties of lightweight aggregates. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are have need higher s/a; 2~4% on mixing proportion. Lightweight concrete was somewhat exhibit lower compressive strength than ordinary concrete. However it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic the lightweight aggregate are highest performance in fresh and hardened concrete.

  • PDF

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Material Properties of High-Strength Concrete Substituted Industrial Waste for Aggregate (잔골재와 굵은골재를 산업폐기물로 치환한 고강도 콘크리트의 재료적 특성에 관한연구)

  • Jeon So-Jin;Lee Woo-Jin;Kim Doo-Sick;Seo Soo-Yan;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.513-516
    • /
    • 2005
  • Previous study on recycled aggregate(RA) has largely been limited to the manufacture of nonstructural-grade concrete due to undesirable physical properties of them such as, high water absorption leading to high water demand of concrete. The restriction seriously limits its market and consequently diminishes the use of RA as a construction material. This paper presents the mechanical properties of recycled concrete substituted by both waste foundry sand(WFS) and recycled coarse aggregate replaced with fine and coarse aggregate concurrently. The result shows that the compressive and tensile strength decrease with the increment of substitution ratio of RA and WFS while bending strength of RA concrete increase.

  • PDF

A Study on the Characteristics of Concrete Use Crushed Aggregates Produced in Busan Suburbs (부산근교에서 생산된 부순골재를 사용한 콘크리트의 특성에 관한 연구)

  • Bae Won Mahn;Beak Dong Il;Jang Hui suk;Kim Myung Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.193-196
    • /
    • 2004
  • The objective of in this study makes investigation into the characteristics of concrete as to properties and blended ratio of crushed aggregates through experimental researches. In this research observed crushed quality characteristic of crushed aggregates that is produced in representative stony mountains of Busan suburbs (Yang-san, Kim-hea, Jin-hea). And wished to investigate the quality change and characteristics of concrete with variation of blend ratio of crushed sand(50, 60, 70, 80, 90, $100\%$). Measured the air contents and slump to investigate properties of fresh concrete, and unit weight and compressive strength in age of 7, 28, 60, 90 days to investigate properties of hardened concrete.

  • PDF

Study on the Properties of Concrete according to the Grading of Crushed Stone (부순 굵은골재의 입도에 따른 콘크리트의 특성에 관한 연구)

  • Choi Se Jin;Lee Seong Yeon;Yeo Byung-Chul;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.213-216
    • /
    • 2004
  • Aggregate occupies about 70 to 80 percent by volume in concrete as skeleton of concrete, but recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, in 2002, the using ratio of crushed stone occupies about $97\%$ of whole coarse aggregate, and ratio of crushed sand occupies about $18.3\%$ of whole fine aggregate. This is an experimental study to compare and analyze the properties of concrete according to the grading of crushed stone to improve quality and mix design of concrete using crushed stone. According to results, it was found that grading level of crushed stone in the range of G42 to G60 was better than any other grading level in terms of fluidity and compressive strength. And it is considered to be in the range of 6.52 to 6.85 in terms of FM.

  • PDF

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.