• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.021 seconds

Seasonal Changes in Structure and Landscape of Urban Stream Corridor - In the Case of Gongji Stream in Chuncheon- (도시하천 하도구조와 경관의 계절변화 - 춘천시 공지천을 중심으로 -)

  • Jo Hyun-Kil;Han Gab-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.739-748
    • /
    • 2005
  • The purpose of this study is to analyze seasonal changes in structure and landscape of Gongji stream corridor in Chuncheon, and to suggest some guidelines to contribute to creating a desirable close-to- nature stream. The study seasonally surveyed floodplain and revetment conditions, channel micro-topography, streamflow level and velocity, and vegetational cover. Flooding, water level, and vegetation were major factors of affecting seasonal changes in streambed structure and stream landscape. Small sand bars and islands were considerably disturbed by flooding and water level change. However, large islands and sand bars in the upper and middle section of the study stream remained or reappeared even after flooding. Flooding also tended to repeat channel sedimentation at the same spot. Controlling water volume of the Euiam Lake, which is adjacent to the study stream, caused higher water level downstream in the dry seasons. The majority of vegetation in sand bars and islands was washed away by the floods. Vehicle passing, crop cultivation, and ball game were other elements which disturbed vegetation in the floodplain. Creating a close-to-nature stream should reflect micro-topographical changes of channel by flooding, prevent improper vehicle entry and human use, and remove concrete material in the revetment and floodplain.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

An Experimental Study on the Mixing Design of the Concrete Using Crushed Sand (부순모래 콘크리트의 배합설계에 관한 실험적 연구)

  • 이진규;반호영;윤기원;최응규;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.35-40
    • /
    • 1995
  • There are carbonatiion, salt attack, freezing & thawing and alkali-aggregate reactions as the cautions of durability lowering of concret structure. Generally, these cautions complicatedly lower the durability of structure and among these cautions the most serious problem is salt attack and carbonation. This study is intending to get the carbonation phenominon, that among cement calcium hydroxides change into calcium carbonate by responding to carbon mitrogen in the air.

  • PDF

Non-Destructive Diagnosis on the Corrosion of Reinforcing Bar in Concrete (콘크리트중의 철근부식에 대한 비파괴 진단방법에 관한 연구)

  • 윤재환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.75-81
    • /
    • 1992
  • 염분을 함유한 철근콘크리트중의 철근부식에 관한 2년 촉진시험으로부터 콘크리트표면에서 측정한 자연전위값과 실제의 철근 부식상황과를 비교한 결과 철근의 수식상황을 자연전위법을 이용하여 비파괴적으로 진단하는 방법이 유효함을 알았다. 포화칼로멜전극을 사용했을 경우 -300mV이하이면 부식이 발생하였으며 -200mV이상이면 부식이 발생하지 않았다. 또한 부시공시체에 대한 휨강도시험도 행하였으며 중성화에 대한 검토로 행하였다.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

An Experimental Study for Flexure/Shear Failure Behavior of Composite Beam with GFRP Plank Used As a Permanent Formwork and Cast-in-place High Strength Concrete (영구거푸집으로 사용한 유리섬유 FRP 판과 현장타설 고강도콘크리트로 이루어진 합성보의 휨/전단파괴거동에 관한 실험적 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4245-4252
    • /
    • 2015
  • In this study, an experiment which utilized glass fiber reinforced polymer(GFRP) plank as the permanent formwork of cast-in-place high strength concrete structures was performed. The GFRP plank currently being produced has smooth surface so that it causes problems in behavior with concrete. Therefore, this research analyzed the flexure/shear failure behavior of composite beams, which used GFRP plank as its permanent formwork and has short shear span ratio, by setting the sand coated at GFRP bottom surface, the perforation and interval of the GFRP plank web, and the width of the top flange as the experimental variables. As a result of the experiments for effectiveness of sand attachment in case of not perforated web, approximately 47% higher ultimate load value was obtained when the sand was coated than not coated case and bending/shear failure mode was observed. For effectiveness of perforation and interval of gap, approximately 24% higher maximum load value was seen when interval of the perforation gap was short and the fine aggregate was not coated, and approximately 25% lower value was observed when the perforation gap was not dense on the coated specimen. For effectiveness of top flange breadth, the ultimate load value was approximately 17% higher in case of 40mm than 20mm width.

Characteristics of fresh mortar with particle size and replacement ratio of copper slag (동제련 슬래그의 입도 및 잔골재 치환율 변화에 따른 시멘트 모르타르의 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • It is estimated that over 2 million tons of non-ferrous wastes are generated after refining. Up to now, most researches were focused on extracting precious metals and there were very few research on the utilization of the slag byproduct. In this study, we studied to evaluate whether copper slag could be used as aggregates in concrete. Fresh mortar were evaluated on the particle size and replacement ratio of the copper slag with river-sand. Experimental results indicated that flow, air content and drying shrinkage of concrete varied with particle size, which confirmed that proper classification of copper slag is very important. And, setting time and unit weight of the concrete increased with replacement ratio. When particle size of the slag was similar to the river-sand, concrete with copper slag showed slump, air content, setting time, drying shrinkage and unit weight became larger compared to the concrete using river-sand only. Therefore, it is believed that proper classification and replacement ratio should be optimized for the effective use of slag in concrete.

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

A study on Location Condition for Erosion Control Dam - Focus on Chungcheong region and Kyeongsangbuk-do - (사방댐 입지조건에 관한 연구 - 충청지역과 경북지역을 중심으로 -)

  • Park, Sae-Jun;Lee, Joon-Woo;Choi, Yeon-Ho;Kim, Myeong-Jun;Kweon, Hyeong-Keun;Jeon, Yong-Jun
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2010
  • This study is to analyze location conditions for erosion control dams to be constructed in Chungcheongnam-do, Daejeon Metropolitan City, Chungcheongbuk-do and Gyeongsangbuk-do in order to establish proper conditions for erosion control dams in the future. 199 sites where erosion control dams are expected to be built in 2010 were chosen and investigated in terms of 12 factors including basin area, basin slope, and landslide risk. The results showed that erosion control dams for Chungcheongnam-do and Daejeon Metropolitan City are mostly impermeable gravity dams mainly composed of concrete. In contrast, Chungcheongbuk-do and Gyeongsangbuk-do are increasing the number of permeable or compound erosion control dams. Basin analysis at planned erosion control dam sites showed that at least 44.5% of the total area has high landslide risk. Gyeongsangbuk-do had the largest basin area for erosion control dam sites at 157.3ha, followed by Chungcheongbuk-do at 64.4ha and Chungcheongnam-do at 54.8ha. Analysis of sand deposits in the Chungcheongnam-do erosion control dam built in 2010 confirmed an average deposit of 971.8m3. The sand deposit capacity and amount of sediment control for erosion control dams have a very low correlation with basin area or flow path slope, and this needs to be addressed in future sand deposit capacity designs.

A study of the fresh properties of Recycled ready-mixed soil materials (RRMSM)

  • Huang, Wen-Ling;Wang, Her-Yung;Chen, Jheng-Hung
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.787-799
    • /
    • 2016
  • Climate anomalies in recent years, numerous natural disasters caused by landslides and a large amount of entrained sands and stones in Taiwan have created significant disasters and greater difficulties in subsequent reconstruction. How to respond to these problems efficaciously is an important issue. In this study, the sands and stones were doped with recycled materials (waste LCD glass sand, slag powder), and material was mixed for recycled ready-mixed soil. The study is based on security and economic principles, using flowability test to determine the water-binder ratio (W/B=2.4, 2.6, and 2.8), a fixed soil: sand ratio of 6:4 and a soil: sand: glass ratio of 6:2:2 as fine aggregate. Slag (at concentrations of 0%, 20%, and 40%) replaced the cement. The following tests were conducted: flowability, initial setting time, unit weight, drop-weight and compressive strength. The results show that the slump values are 220 -290 mm, the slump flow values are 460 -1030 mm, and the tube flow values are 240-590 mm, all conforming to the objectives of the design. The initial setting times are 945-1695 min. The unit weight deviations are 0.1-0.6%. The three groups of mixtures conform to the specification, being below 7.6 cm in the drop-weight test. In the compressive strength test, the water-binder ratios for 2.4 are optimal ($13.78-17.84kgf/cm^2$). The results show that Recycled ready-mixed soil materials (RRMSM) possesses excellent flowability. The other properties, applied to backfill engineering, can effectively save costs and are conducive to environmental protection.