• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.034 seconds

Effect of internal stability on the failure properties of gravel-sand mixtures

  • Zhongsen Li;Hanene Souli;Jean-Marie Fleureau;Jean-Jacques Fry;Tariq Ouahbi;Said Taibi
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.395-403
    • /
    • 2023
  • The paper investigates the effect of two parameters - sand content (SC) and grain migration during shearing - on the mechanical properties of gravel-sand mixtures. Consolidated undrained (CU) triaxial tests were carried out on eight series of mixtures containing gravel (1<d<16 mm) and sand (0.1<d<1 mm). The prepared mixtures have sand contents of 0, 10, 15, 20, 40, 54, 94 and 100%, and a relative density of 60%. The transition sand content (TSC) is experimentally defined and marks the transition from gravel-driven to sand-driven behavior. For SC<TSC, the dry density of the mixture increases with SC. This induces an increase in undrained peak strength and dilative trend. The slope and position of the critical state line (CSL) are also deeply dependent on SC. At SC=TSC, the mixtures exhibit the largest dry density and yield the highest undrained peak strength and the largest dilative trend. During shearing, large internal migration of grains was observed at the TSC, causing heterogeneity in the sample. Analysis of the CSL deduced from the final points of the triaxial tests shows that, at the TSC, failure appears to correspond to the behavior of the coarsest fraction of the soil. This fraction is located in the upper part of the sample, where the sand particles had been eliminated by suffusion. On the other hand, in the more stable materials, the CSL is consistent with the bulk grain size distribution of the soil.

Preperties of Mortar Using Ceramic Wastes (도자기 폐기물을 사용한 시멘트 모르터의 특성)

  • 김기형;최재진;최연왕;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-106
    • /
    • 1999
  • In this study, the properties of mortar using ceramic wastes as admixtures and fine aggregates are considered experimentally. The main chemical of ceramic wastes is SiO2 and micro structure of ceramic wastes is porous. Absorption of ceramic wastes is higher than that of river sand and specific gravity is lower than that of river sand. Flow value of mortar using ceramic waste admixture and fine aggregates is increased more or less and the strength of mortar using ceramic wastes as fine aggregates is increased.

  • PDF

Factors on the Physical Properties of Dry Ready Mixed Cement Mortar for Finishing (마감용 건조모르타르의 물성에 미치는 각 요인의 영향)

  • 정재동;김원기;이영진;송용순;황재현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.138-143
    • /
    • 1993
  • The objective of this report is to investigate the effect of factors like the fineness modulus of sand , content of fly ash and slaked lime, binder/sand ratio, admixture dosage on the physical properties of mortar for finishing. The analysis was performed with design of experiment and air content, water retention and compressive strength were measured.

  • PDF

Properties of Polymer-Modified Mortars Containing FPR Wastes (FRP 폐기물을 첨가한 폴리머-시멘트 모르타르의 특성)

  • 이병기;김승문;황의환;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.84-92
    • /
    • 1996
  • The flexural and compressive strengths of polymer-modified mortars containing FRP wastes were investigated. The specimens of polymer-modified mortars containing FRP mortat were perpared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various FRP-sand ratios(10, 20, 30, 40, 50wt%). The compressive and flexural strengths of polymer-mokified mortars containing FRP wastes were decreased with an increase of FRP-sand ratio. But the compressive and flexural strengths of PAE polymer-modified mortar were more improved than OPC, whereas those of SBR and EVA polymer-modified mortars containing FRP wastes were decreased than OPC.

  • PDF

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Mechanical Properties of Reclaimed Plastic Concrete (재생수지콘크리트의 역학적 성질에 관한 연구)

  • 전진영;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.132-141
    • /
    • 1987
  • The objective of the study was to obtain the compressive the tensile and the fleniril strengthes, thermal resistance, chemical resistance and fire resistance of the reclaimed plastic corcrete in order to investigate the feasibility as a new construction material This reclaimed plastic concrete is a compositive material which is composed of sand and blend of 50% of LDPE(Low density polyethylene) and 50% of HDPE (High density polyethylene) which are inexpensive and easy to reclaim. The results obtained in the study are summarized as follows: 1. As the binder content ranging from 20 to 40 % increase, the compresie, the splitting tensile and the flexural strengthes were increased. The compressive strenzth of the specimen tested was the highest and flexural strength the next and tensile strength the lowest 2. The compressive, the tensile and flexural strengthes of specimens made of fine sand were higher than those of coarse sand. The compressive, the tensile and the flexural strengthes of specimens made of high pressure molding were higher than those of low pressure molding. 3.In comparison with different additives, the specimens with carbon black was excellent and B. H. T. good and ferric oxide poor for thermal resistance. 4. In relationship between the flexural strength with varying temperature from -23$^{\circ}C$ to 80$^{\circ}C$. The flexural strengthes were decreared as temperature increased at 25 %, 30 % and 35 % of binder contents, respectively. Especially at 60$^{\circ}C$, the flexural strength was significantly decreased. 5. The decrement of flexural strengthes and the weight losses after 7 days immersion in acid or alkali solutions were not significant. 6. Fire resistance of the reclaimed plastic concrete was not significantly influenced by the contents of sand. However, the fire resistance of the reclaimed plastic concrete was depend upon melting and ignition properties of the binder itself. Therefore. a proper selection of the binder and the fire retardant are recommended in arder to improve fire resistance of the reclaimed plastic concrete.

  • PDF

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.145-152
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of mortar and fineness modulus of sand on the properties of fresh mortar. The effect of water-binder ratio. sand-binder ration. contents of ggbs (by mass of total cementitious materials). and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the fellowing conclusions can be drawn: (1) The mixing time needed for high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

Study on Design and Construction of CFRD under Unfavorable Conditions (불리한 조건에서의 콘크리트 표면차수벽형 석괴댐 설계 및 시공)

  • Park Dong-Soon;Kim Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.97-107
    • /
    • 2006
  • Or this study, prevailing design and construction methods of dam under various unfavorable conditions are summarized. for example, foundation treatment with large scale alluvium site or weathered rock mass, dam constructing techniques with unfavorable topographic conditions are studied for the better understanding of relating engineers. Also, zoning by using weak rocks and sand-gravel fill techniques are summed up.

An Experimental Study on the Stregth characteristics of Mortar using the Blast-Furnace Slag Sand (서냉슬래그 모르터의 강도특성에 관한 연구)

  • 임남기;김종락;김성식;김영회;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.60-65
    • /
    • 1998
  • This experimental Study presents the strength properties of mortar Using the Blast-furnace Slag Sand. It gives following result. The 3-days and 7-days compression strength is increase as substitution rate is higher. As W/C ratio increase, the strength is decrease. The flexural strength is increase as substitution rate is higher specially. As flexural strength ratio for compression strength is each 16.7%, 21.1%, 25.4% on 3-days, 7-days, 28-days, long age flexural strength is higher than short age.

  • PDF

Properties of Flowable High-volume Fly Ash-Cement Composites (다량의 플라이애쉬를 사용한 유동성 시멘트복합체의 특성)

  • 원종필;신유길;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.105-110
    • /
    • 1998
  • The purpose of this was to examine the used of fly ash as a type of construction material. In this paper the results from a recent study on development of a cement composite utilizing relatively large amount of fly ash are presented. The flowable fly ash-cement sand composite was investigated for strength and flowability characteristics. The independent variable considered were: fly-ash content, sand content, and ratio of water to cementitious materials. Results of this study show that high volume fly-ash composite can be proportioned to obtain 10~15kg/$\textrm{cm}^2$ compressive strength at 28 days. For applications requiring strength between 10kg/$\textrm{cm}^2$ and 15kg/$\textrm{cm}^2$, the mixture with fly ash-cement ratio of 5.6 and sand-cement ratio of 28 with relatively high water content may be used. Slump was held at 25$\pm$1cm for all mixtures produced compressive strength at 28 days were found to range from 5kg/$\textrm{cm}^2$ to 13.7kg/$\textrm{cm}^2$.

  • PDF