• Title/Summary/Keyword: sand, sand concrete

Search Result 801, Processing Time 0.022 seconds

Application for Lean Concrete Using Basic Oxygen Furnace-Slag (제강 풍쇄 슬래그 잔골재를 활용한 빈배합콘크리트 적용성 연구)

  • Kim Jin-Cheol;Shim Jae-Won;Jo Kyu-Seong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.177-180
    • /
    • 2004
  • In these days the exhaustion of natural sand has been highlighted with the environmental damages due to excavating sea-sand. Many researchers and engineers have investigated some materials to replace natural sand with, and were interested in using the basic oxygen furnace-slag, the industrial by-product, as fine aggregate. One of the drawbacks to using BOF-slag as a aggregate is to be gradually expanded, and needed the time-consuming process, but some engineers in Korea tackled it recently. In this study, the stabilized BOF-slag was used for lean concrete under the laboratory condition. After testing the several properties - dry density, compressive strength, and young's modulus-, it was found that the dry density was proportionally governed by BOF-slag content and the 7-day compressive-strength was $110\~120\%$ of the natural sand-made. Therefore, BOF-slag is applicable to the lean concrete because they greatly satisfied the required strength, $50kgf/cm^2$.

  • PDF

A Experimental Study on the Comparison of the Compression Strength Characteristics of Mortar using the Blast-Furnace Slag Sand (슬래그모래를 사용한 모르터의 압축강도특성 비교에 관한 실험적 연구)

  • 김종락;김성식;이복만;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.40-45
    • /
    • 1999
  • This experimental study presents the strength properties of mortar using the blast-furnace slag sand. The mix disign of this study is based on the each three classes of unit water; (250, 275, 300)kg/㎥ and four classes of W/C; (45, 50, 55, 60)% and substitution rate(0, 25, 50, 75, 100)%. It gives following result. As W/C ratio increase, the strength is decrease. In case of mortar using air-cooled blast-furnace slag sand, the 3-days and 7-days compression strength is increase as substitution rate is higher. But in case of the mortar using the quenched blast-furnace slag sand, the compression strength is decrease as substitution rate is higher.

  • PDF

Effects of Sand/Binder Ratios on the Mechanical Properties of Mortars Containing Fly ash and Silica fume

  • Park, Ki-Bong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • The paper presents details of an investigation into the effect of sand content upon the strength and shrinkage of mortar. This strategy was to produces more durable strength mortar with less cement. Cement mortars containing $20\;wt.\;\%$ Class F fly ash, and/or $6\;wt.\;\%$ silica fume were prepared at a water/binder ratio of 0.45 and sand/binder ratios of 2.0, 2.5, 2.7, and 3.0. The increase in sand/binder ratio caused a decrease in the mortar flow. However, the sand/binder ratio did not affect the strength development. Drying shrinkage decreased with increasing the sand contents.

  • PDF

A Study on the Influence of the Physical Properties of Mortar on Surface Shape of Crushed Sand (부순모래의 표면형상이 모르터의 물성에 미치는 영향)

  • 이승한;김종인;윤용호;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.51-56
    • /
    • 1997
  • This study is aimed for investigating the influence of mortar on improved of surface shape of crushed sand, and analyzing the physical properties of fresh state and hardened state. By the test results, it was found that the flow value and bleeding ratio was increased, but the change of flow value according to time was decreased with the improved surface shape of crushed sand. Also, comparing improved of surface shape of crushed sand with not improved of surface shape of crushed sand on strength, compressive strength is about the same and flexural strength decrease in case of improved of surface shape of crushed sand.

  • PDF

Study on the Decision of Saturated Surface Dry of Crushed Stone Sand with Very Fine Sand (잔입자함유랑에 따른 부순모래의 표건 상태 판정에 관한 연구)

  • 이성복;최진만;이도헌;전용수;김병환;이현희;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.10-16
    • /
    • 1996
  • This study is aimed for investigating a decision of the saturated surface dry of crushed stone sand and measuring the moisture with increasing percentage of VFS(Very Fine Sand) replacement each crushed stone sand. The results indicated that moisture of crushed stone sand is generally increased with increasing percentage of VFS replacement and the rate of increase of moisture is about 30% every time that VFS replacement increases 3.5%. Also the saturated surface dry for crushed stone sane is proposed as a point of time where shape of flow-cone first slumps in this paper.

  • PDF

A Study on the Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지하 전력시설용 되메움재 활용에 관한 연구)

  • 이대수;홍성연;김경열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.665-672
    • /
    • 2002
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated for mechanical stability, environmental hazard and power transmission capacity. Also its properties are compared with the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

  • PDF

Incorporation of CrusHed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part I: Study of Formulation

  • Rmili, Abdelhamid;Ouezdou, Mongi Ben;Added, Mhamed;Ghorbel, Elhem
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper examines the incorporation of the crushed sand (CS) and desert sand (DS) in the formation of self compacting concrete (SCC). These sands have been substituted for the rolled sand (RS), which is currently the only sand used in concretes and which is likely to run out in our country. DS, which comes from the Tunisian Sahara in the south, is characterized by a tight distribution of grains size. CS, a by-product of careers containing a significant amount of fines up to 15%, is characterized by a spread out granulometry having a maximum diameter of around 5mm. These two sands are considered as aggregates for the SCC. This first part of the study consists in analyzing the influence of the type of sand on the parameters of composition of the SCC. These sands consist of several combinations of 3 sands (DS, CS and RS). The method of formulation of the adopted SCC is based on the filling of the granular void by the paste. The CS substitution to the RS made it possible, for all the proportions, to decrease the granular voids, to increase the compactness of the mixture and to decrease the water and adding fillers proportioning. These results were also obtained for a moderate substitution of DS/CS (< 40%) and a weak ratio of DS/RS (20%). For higher proportions, the addition of DS to CS or RS did not improve the physical characteristics of the SCC granular mixture.

Comparative Study on Compressive Strength of Concrete with New Sand-Cap and Neoprene Pad

  • Park, Young-Shik;Suh, Jin-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • The most typical capping method for concrete structures is a sulfur-mortar compound capping, provided it satisfied the standard criterion set forth by ASTM C 617, but this conventional bonded-type method has many problems. It exhibits relatively the smaller unreliable value of the strength of high-strength concrete due to the differences of elasticity and strength between the cylinder and the cap, and manifests poor serviceability such as dangerous working tasks or a waste of the working time. To prevent these problems, unbonded-type capping methods have taken the place of the conventional methods in recent years. One of the popular methods is the use of synthetic rubber like a neoprene pad. Serious problems still remain in this method, which include the consideration of its chemical characteristics in consideration of the selection, the safekeeping and the economy of the pads. Moreover, the synthetic rubber pads cannot be used in concrete cylinder with strength greater than 80 MPa according to ASTM C 1231-00. New 'sand-capping method' presented in this study, can be applicable to the compressive strength evaluation of the high strength concrete in the range of $70{\sim}100\;MPa$. This new method has better simplicity and reliability than those of existing 'sand-box', because usual materials such as standard sand and simply-devised apparatus are used for the capping system. The statistical analysis of the test results revealed that the new sand-capping method exhibited the smallest deviation and dispersion, attesting for its much better reliability than other methods specified in ASTM C 1231/1231M.

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.