• 제목/요약/키워드: sampling designs

검색결과 92건 처리시간 0.021초

Modified Adaptive Cluster Sampling Designs

  • Park, Jeong-Soo;Kim, Youn-Woo;Son, Chang-Kyoon
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.57-69
    • /
    • 2007
  • Adaptive cluster sampling design is known as a sampling method for rare clustered population. Three modified adaptive cluster sampling designs are proposed. The adjusted Hansen-Hurwitz estimator and the Horvitz-Thompson estimator are considered. Efficiency issue of the proposed sampling designs is discussed in a Monte-Carlo simulation study.

A Comparison of Systematic Sampling Designs for Forest Inventory

  • Yim, Jong Su;Kleinn, Christoph;Kim, Sung Ho;Jeong, Jin-Hyun;Shin, Man Yong
    • 한국산림과학회지
    • /
    • 제98권2호
    • /
    • pp.133-141
    • /
    • 2009
  • This study was conducted to support for determining an efficient sampling design for forest resources assessments in South Korea with respect to statistical efficiency. For this objective, different systematic sampling designs were simulated and compared based on an artificial forest population that had been built from field sample data and satellite data in Yang-Pyeong County, Korea. Using the k-NN technique, two thematic maps (growing stock and forest cover type per pixel unit) across the test area were generated; field data (n=191) and Landsat ETM+ were used as source data. Four sampling designs (systematic sampling, systematic sampling for post-stratification, systematic cluster sampling, and stratified systematic sampling) were employed as optimum sampling design candidates. In order to compute error variance, the Monte Carlo simulation was used (k=1,000). Then, sampling error and relative efficiency were compared. When the objective of an inventory was to obtain estimations for the entire population, systematic cluster sampling was superior to the other sampling designs. If its objective is to obtain estimations for each sub-population, post-stratification gave a better estimation. In order to successfully perform this procedure, it requires clear definitions of strata of interest per field observation unit for efficient stratification.

An Optimal Scheme of Inclusion Probability Proportional to Size Sampling

  • Kim Sun Woong
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.181-189
    • /
    • 2005
  • This paper suggest a method of inclusion probability proportional to size sampling that provides a non-negative and stable variance estimator. The sampling procedure is quite simple and flexible since a sampling design is easily obtained using mathematical programming. This scheme appears to be preferable to Nigam, Kumar and Gupta's (1984) method which uses a balanced incomplete block designs. A comparison is made with their method through an example in the literature.

민감도법을 이용한 크리깅모델의 순차적 실험계획 (Sensitivity Approach of Sequential Sampling for Kriging Model)

  • 이태희;정재준;황인교;이창섭
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1760-1767
    • /
    • 2004
  • Sequential sampling approaches of a metamodel that sampling points are updated sequentially become a significant consideration in metamodeling technique. Sequential sampling design is more effective than classical space filling design of all-at-once sampling because sequential sampling design is to add new sampling points by means of distance between sampling points or precdiction error obtained from metamodel. However, though the extremum points can strongly reflect the behaviors of responses, the existing sequential sampling designs are inefficient to approximate extremum points of original model. In this research, new sequential sampling approach using the sensitivity of Kriging model is proposed, so that new approach reflects the behaviors of response sequentially. Various sequential sampling designs are reviewed and the performances of the proposed approach are compared with those of existing sequential sampling approaches by using mean squared error. The accuracy of the proposed approach is investigated against optimization results of test problems so that superiority of the sensitivity approach is verified.

지속가능한 산림경영에 적합한 표본조사 방법의 개발 (Development of a Forest Inventory System for the Sustainable Forest Management)

  • 신만용;한원성
    • 한국산림과학회지
    • /
    • 제95권3호
    • /
    • pp.370-377
    • /
    • 2006
  • 본 연구는 지속가능한 산림경영에 적합한 표본조사 방법을 제시하기 위해 계통적 추출법, 계통적 집락추출법, 그리고 층화집락추출법을 이용하여 경기도 양평군의 산림을 대상으로 자료를 수집한 후 통계검증을 실시하였다. 표본조사 방법은 계통적 집락추출법이 가장 효율적인 것으로 분석되었는데, 계통적 집락추출법을 적용할 경우 집락의 형태와 집락 내의 표본점 간의 거리를 결정하기 위해 5가지 집락의 형태와 표본점간의 거리 4가지에 대하여 통계검증을 실시하였다. 그 결과 집락의 형태는 삼각형 그리고 집락 내의 표본점 간의 거리는 50m가 가장 적합할 것으로 평가되었다.

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

Unbiased Balanced Half-Sample Variance Estimation in Stratified Two-stage Sampling

  • Kim, Kyu-Seong
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.459-469
    • /
    • 1998
  • Balanced half sample method is a simple variance estimation method for complex sampling designs. Since it is simple and flexible, it has been widely used in large scale sample surveys. However, the usual BHS method overestimate the true variance in without replacement sampling and two-stage cluster sampling. Focusing on this point , we proposed an unbiased BHS variance estimator in a stratified two-stage cluster sampling and then described an implementation method of the proposed estimator. Finally, partially BHS design is explained as a tool of reducing the number of replications of the proposed estimator.

  • PDF

Probability Sampling Using Nonlinear Programming : a Feasibility Study

  • Kim, Sun-Woong
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.201-205
    • /
    • 2003
  • We show how some probability nonreplacement sampling designs can be implemented using nonlinear programming, The efficiency of the proposed approach is compared with selected probability sampling schemes in the literature. The approach is simple to use and appears to have reasonable variance.

  • PDF

THE EXTENSION OF THREE-WAY BALANCED MULTI-LEVEL ROTATION SAMPLING DESIGNS

  • Kim, K.W.;Park, Y.S.;Lee, D.H.
    • Journal of the Korean Statistical Society
    • /
    • 제35권4호
    • /
    • pp.343-353
    • /
    • 2006
  • The two-way balanced one-level rotation design, $r_1^m-r_2^{m-1}$, and the three-way balanced multi-level rotation design, $r_1^m(\iota)-r_1^{m-1}$, were discussed (Park et al., 2001, 2003). Although these rotation designs enjoy balancing properties, they have a restriction of $r_2=c{\cdot}r_1$ (c should be a integer value) which interferes with applying these designs freely to various situations. To overcome this difficulty, we extend the $r_1^m(\iota)-r_1^{m-1}$ design to new one under the most general rotation system. The new multi-level rotation design also satisfies tree-way balancing which is done on interview time, rotation group and recall time. We present the rule and rotation algorithm which guarantee the three-way balancing. In particular, we specify the necessary condition for the extended three-way balanced multi-level rotation sampling design.

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.