• Title/Summary/Keyword: sample pretreatment

Search Result 231, Processing Time 0.036 seconds

Studies on the Processing of Rapid- and Low Salt-Fermented Liquefaction of Sardine (Sardinops melanoslicta)(III) - Effect of Pretreatment Method on Water Adding, Heating, and NaCl Added to the Fermented Liquefaction of Chopped Whole Sardine - (저식염 속성 정어리 발효 액화물 가공에 관한 연구(III) - 마쇄육의 발효 액화에 미치는 가수.가온 전처리 및 식염첨가 방법의 영향 -)

  • Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • This study was attempt to improve the quality of rapid- and low salt-fermented liquefaction of sardine (Sardinops melanoslicta). Effect of pretreatment methods such as water adding, heating, and intermittent NaCl adding on fermented liquefaction of chopped whole sardine were investigated. The divisions of the experimental samples by pretreatment methods were as follows; Sample A (water adding and heating): chopped whole sardine adding 20% water and then adding 3 and 5% NaCl consecutively at the intervals of 3 and 6 hrs during heating for 9 hrs at $50^{\circ}C$ and then fermented at $33^{\circ}C$ for 90 days. Sample B (preheating): chopped whole sardine with 8% NaCl and heating at $50^{\circ}C$ for 9 hrs and then fermented at $33^{\circ}C$ for 90 days. Sample C (control): neither pretreatment methods of water adding nor preheating on chopped whole sardine with 13% NaCl and then fermented at $33^{\circ}C$ for 90 days. Comparison of the appropriate fermentation period, yield of hydrolysate, chemical composition of fermented liquefied products were carried out. The highest content of amino nitrogen appeared at 60 days in the sample A, 75 days in the sample B, and 90 days in the sample C during the fermentation period. The appropriate fermentation period of the sample A was shorten 15 days than the sample B and 30 days than the sample C in the processing of sardine. The product A was lower NaCl (8.5%) and lower histamine content (25mg/100g) than the sample B and C. Possibly, three kinds of pretreatment methods such as water adding, heating, and intermittent NaCl adding, might be recommend as the processing of rapid- and low salt-fermented liquefaction product of chopped whole sardine.

  • PDF

Changes of Acidity, Antimicrobial Activity and Colors during Pretreatment of Leaf Mustard Dolsan(Brassica juncea) (돌산갓 전처리 중의 산도, 향균성 및 색도 변화)

  • 박석규;서권일;이상원;조영수;손미혜
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 1997
  • In order to use leaf mustard Dolsan food preservative ingradient acidity, antimicrobial activity and colors were investigated during pretreatment of leaf mustard Dolsan. pH was remarkably decreased after 8 hours to pretreatment(extracted on shaking) of leaf mustard Dolsan, and no changes were observed after that time. pH of leaf part was higher than stalk after 8 hours storage. Titratable acidity was opposite tendency to the pH. pH was gradually decreased than initial stage during pretreatment of leaf mustard Dolsan at 30, 40 and 5$0^{\circ}C$. After 16 hours pretreatment, the higher pretreatment temperature was, the higher pH was, but after pretreatment for 48 hours, pH of sample pretreated at 5$0^{\circ}C$ was lower than that of sample pretreated at 40 $^{\circ}C$. Antimicrobial activity of leaf mustard Dolsan extract pretreated at 3$0^{\circ}C$ was the strongest of the samples pretreated at 30, 40 and 5$0^{\circ}C$, and that of stalk part was stronger than that of leaf part. L and time. L and b value was higher in the order of samples pretreated at 40, 50 and 3$0^{\circ}C$, and the lower pretreatment temperature was, the higher a value was. L value of stalk part was higher than that of leaf part, but a and b value of leaf part was higher than that of stalk part.

  • PDF

A Bio-fluidic Device for Adaptive Sample Pretreatment and Its Application to Measurements of Escherichia coli Concentrations

  • Choi Won-Jae;Park Je-Kyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement of Escherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analyses obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in which E. coli concentrations can be measured is broadened, to an optical density (O.D.) range of $0.3{\sim}30$. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.

A comparative measurement study of Pb, Cd using ICP-AES with different pretreatment methods (ICP-AES를 이용한 전처리방법에 따른 환경시료내 Pb, Cd의 측정 비교 연구)

  • 권태영;윤춘경;전지홍
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.513-520
    • /
    • 1998
  • The evaluation of uncertainty in environmental elemental analysis can be difficult because of the wide variety of analytical sample and objectives. for the specification of measured, elemetal analysis need certain method and high pretreatment technique. The sample of Pb, Cd in paddy soil and sewage sludge were analyzed by same ICP-AES, but each using four different pretreatment technique ; 0.1N HCl extraction, AB-DTPA extraction and two Mixture Acid Digestion. The four technique gave comparable results for the analysis of lead and cadmium. Concentrations determined by Mixture Acid Digestion were more higher than those by 0.1NHCI extraction and AB-DTPA extraction.

  • PDF

Effect of Soil Sample Pretreatment Methods on Total Heavy Metal Concentration (토양 시료조제 방법이 총중금속 농도에 미치는 영향)

  • Kim, Jung-Eun;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • In analyzing heavy metals in soil samples, the standard protocol established by Korean Minstry of Environment (KSTM) requires two different pretreatments (A and B) based on soil particle size. Soil particles < 0.15 mm in diameter after sieving are directly processed into acid extraction (method A). However, if the quantity of soil particles < 0.15 mm are not enough, grinding of the particles within 0.15 mm ~ 2 mm is required (method B). Grinding is often needed for some field samples, especially for the soil samples retrieved from soil washing process that contain relatively large-sized soil grains. In this study, two soil samples with different particle size distribution were prepared and analyzed for heavy metals concentrations using two different pretreatment to investigate the effect of grinding. The results showed that heavy metal concentrations tend to increase with the increase of the fraction of small-sized particles. In comparison of the two pretreatments, pretreatment A yielded higher heavy metal concentration than pretreatment B, indicating significant influence of grinding on analytical results. This results suggest that the analytical values of heavy metals in soil samples obtained by KSTM should be taken with caution and carefully reviewed.

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF

Pretreatment of Kenaf Core by Combined Electron Beam Irradiation and Water Steam for Enhanced Hydrolysis (향상된 가수분해율을 얻기 위한 전자선 조사와 물찜의 복합 전처리공정을 이용한 케냐프 코어 전처리)

  • Lee, Jin-Young;Lee, Byoung-Min;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.113-118
    • /
    • 2014
  • We have investigated the combined pretreatment of electron beam irradiation (EBI) and water steam as a kenaf core pretreatment process. After each sample was exposed to electron beam dose ranging from 50 to 1,000 kGy, the irradiated sample was treated by water steam using an autoclave for 5-h at $120^{\circ}C$. The pretreated samples were characterized using FTIR-ATR and XRD. FTIR spectra and XRD analysis of nonpretreated and pretreated samples confirm that crystallinity changes were observed before and after the pretreatment. The crystallinity index (CrI) was increased from 50.6% for nonpretreated sample 55.0% for 500 kGy exposed sample. And then, we analyzed sugar yield that is the amount of produced mono-saccharides in pretreated sample by enzymatic hydrolysis; an enzyme activity rate was 70 FPU/mL and 40 CBU/mL, and the loading time was 24, 48 and 72-h. The highest sugar yield was 83.9% at 500 kGy after 72-h for enzymatic hydrolysis. The sugar yield of enzymatic hydrolysis for pretreatment samples was increased as doses are subsequently changed to 100, 200 and 300 kGy, allowing to give 50.8%, 58.6% and 67.9%, respectively.

The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment (억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung-Kon;An, Gi-Hong;Suh, Sae-Jung;Park, Don-Hee
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

A Method for Application of Ammonium-based Pretreatment Solution in Preparation of Copper Flakes Coated by Electroless Ag Plating (구리 플레이크의 무전해 은도금에서 암모늄계 구리 전처리 용액의 적용법)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.57-63
    • /
    • 2015
  • In order to prepare a low-cost conductive filler material possessing improved anti-oxidation property, Ag-coated Cu flakes were fabricated and the effects of an applying method of ammonium-based pretreatment solution on the Cu flakes were analyzed. The pretreatment solution was used to remove the surface oxide layer on Cu flake. During a single-stage pretreatment process, hole-shaped defects were formed on the flake surface during the pretreatment after 2 min, and the number and size increased in proportion to the pretreatment time. In the case that Ag plating solution was injected in the pretreatment solution after the pretreatment for 2 min, the defects were also formed during Ag plating. In contrast, the defects tremendous decreased in the case that the pretreatment solution was removed after the first pretreatment for 2 min and the Ag plating proceeded after the second pretratment using a low concentration pretreatment solution. As the final result, the 15 wt% Ag-coated Cu flake sample which was fabricated using the single-stage pretreatment oxidized at $166^{\circ}C$, but the sample fabricated by the double-stage pretreatment oxidized at $224^{\circ}C$, indicating definitely improved anti-oxidation property.

Development of the Sample Pretreatment Technique using Microwave for Analysis of Insecticide Imidacloprid Residues (마이크로파를 이용한 잔류 살충제 Imidacloprid 분석용 시료전처리 기술개발)

  • Ahn, S.Y.;Cho, H.K.;Lee, E.Y.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to elucidate extraction efficiency by microwave technique in comparison with sonication technique for extraction of insecticide residue in pear. In the analysis of the extraction efficiency of microwave for a pear spiked with imidacloprid, the extraction efficiency by microwave power of 300 W with extraction temperature of $80^{\circ}C$, heating time of 1 to 3 minute was shown to be similar with the extraction time 20 minutes by sonication. The optimal condition. in consideration of economical condition and treatment time, for microwave extraction of imidacloprid in the pear were 300 watts of power supply, $100^{\circ}C$ of extraction temperature, 1 minute of heating time and 10 mL of acetone volume. A new microwave vessel was developed to rapidly process the sample of the insecticide imidacloprid residues in the pear. This vessel was designed to include a reaction chamber and a filtration equipment, and a gathering chamber. The system could curtail a pretreatment time to 21 minutes than sonication and 7.9 minutes than the previous microwave vessel.