• Title/Summary/Keyword: sample OD matrix

Search Result 4, Processing Time 0.018 seconds

Development of a quasi-dynamic origin/destination matrix estimation model by using PDA and its application (통행 단말기 정보를 이용한 동적 기종점 통행량 추정모형 개발 및 적용에 관한 연구)

  • Lim, Yong-Taek;Choo, Sang-Ho;Kang, Min-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.123-132
    • /
    • 2008
  • Dynamic origin-destination (OD) trip matrix has been widely used for transportation fields such as dynamic traffic assignment, traffic operation and travel demand management, which needs precise OD trip matrix to be collected. This paper presents a quasi-dynamic OD matrix estimation model and applies it to real road network for collecting the dynamic OD matrix. The estimation model combined with dynamic traffic assignment program, DYNASMART-P, is based on GPS embedded in PDA, which developed for collecting sample dynamic OD matrix. The sample OD matrix should be expanded by the value of optimal sampling ratio calculated from minimization program. From application to real network of Jeju, we confirm that the model and its algorithm produce a reasonable solution.

A Methodology for Expanding Sample OD Based on Probe Vehicle (프로브 차량 기반 표본 OD의 전수화 기법)

  • Baek, Seung-Kirl;Jeong, So-Young;Kim, Hyun-Myung;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.135-145
    • /
    • 2008
  • As a fundamental input to the travel demand forecasting, OD has been always a concern in obtaining the accurate link traffic volume. Numerous methods were applied thus far without a complete success. Some existing OD estimation techniques generally extract regular samples and expand those sample into population. These methods, however, leaves some to be desired in terms of accuracy. To complement such problems, research on estimating OD using additional information such as link traffic volume as well as sample link use rate have been accomplished. In this paper, a new approach for estimating static origin-destination (OD) using probe vehicle has been proposed. More specifically, this paper tried to search an effective sample rate which varies over time and space. In a sample test network study, the traffic volume error rate of each link was set as objective function in solving the problem. As a key result the MAE (mean absolute error) between expanded OD and actual OD was identified as about 5.28%. The developed methodology could be applied with similar cases. Some limitations and future research agenda have also been discussed.

The Estimation Model of an Origin-Destination Matrix from Traffic Counts Using a Conjugate Gradient Method (Conjugate Gradient 기법을 이용한 관측교통량 기반 기종점 OD행렬 추정 모형 개발)

  • Lee, Heon-Ju;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.1 s.72
    • /
    • pp.43-62
    • /
    • 2004
  • Conventionally the estimation method of the origin-destination Matrix has been developed by implementing the expansion of sampled data obtained from roadside interview and household travel survey. In the survey process, the bigger the sample size is, the higher the level of limitation, due to taking time for an error test for a cost and a time. Estimating the O-D matrix from observed traffic count data has been applied as methods of over-coming this limitation, and a gradient model is known as one of the most popular techniques. However, in case of the gradient model, although it may be capable of minimizing the error between the observed and estimated traffic volumes, a prior O-D matrix structure cannot maintained exactly. That is to say, unwanted changes may be occurred. For this reason, this study adopts a conjugate gradient algorithm to take into account two factors: estimation of the O-D matrix from the conjugate gradient algorithm while reflecting the prior O-D matrix structure maintained. This development of the O-D matrix estimation model is to minimize the error between observed and estimated traffic volumes. This study validates the model using the simple network, and then applies it to a large scale network. There are several findings through the tests. First, as the consequence of consistency, it is apparent that the upper level of this model plays a key role by the internal relationship with lower level. Secondly, as the respect of estimation precision, the estimation error is lied within the tolerance interval. Furthermore, the structure of the estimated O-D matrix has not changed too much, and even still has conserved some attributes.

OD matrix estimation using link use proportion sample data as additional information (표본링크이용비를 추가정보로 이용한 OD 행렬 추정)

  • 백승걸;김현명;신동호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.83-93
    • /
    • 2002
  • To improve the performance of estimation, the research that uses additional information addition to traffic count and target OD with additional survey cost have been studied. The purpose of this paper is to improve the performance of OD estimation by reducing the feasible solutions with cost-efficiently additional information addition to traffic counts and target OD. For this purpose, we Propose the OD estimation method with sample link use proportion as additional information. That is, we obtain the relationship between OD trip and link flow from sample link use proportion that is high reliable information with roadside survey, not from the traffic assignment of target OD. Therefore, this paper proposes OD estimation algorithm in which the conservation of link flow rule under the path-based non-equilibrium traffic assignment concept. Numerical result with test network shows that it is possible to improve the performance of OD estimation where the precision of additional data is low, since sample link use Proportion represented the information showing the relationship between OD trip and link flow. And this method shows the robust performance of estimation where traffic count or OD trip be changed, since this method did not largely affected by the error of target OD and the one of traffic count. In addition to, we also propose that we must set the level of data precision by considering the level of other information precision, because "precision problem between information" is generated when we use additional information like sample link use proportion etc. And we Propose that the method using traffic count as basic information must obtain the link flow to certain level in order to high the applicability of additional information. Finally, we propose that additional information on link have a optimal counting location problem. Expecially by Precision of information side it is possible that optimal survey location problem of sample link use proportion have a much impact on the performance of OD estimation rather than optimal counting location problem of link flow.