• Title/Summary/Keyword: salt-fermented anchovy sauce

Search Result 44, Processing Time 0.021 seconds

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) During the Ripening and Fermentation-Part 2

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • The Chinese cabbage kimchi, baechoo-kimchi, is the most popular type of kimchi in Korea. This study was performed to investigate the changes of index microorganisms (aerobic bacteria, psychrotrophilic bacteria, coliforms, and Escherichia coli), lactic acid bacteria, pH, and acidity of kimchi during the long-term fermentation and ripening. A homemade-style traditional Korean baechoo-kimchi, was prepared from Chinese cabbage, red pepper, green onion, garlic, ginger, and salt-fermented anchovy sauce, and then incubated at $10^{\circ}C$ for 28 days. In the baechoo-kimchi, the number of aerobic bacteria increased with time. The number of psychrotrophilic bacteria maintained their numbers $(10^4CFU/g)$ in the kimchi during the fermentation. Coliforms and E. coli were not detected in the kimchi. The pH of kimchi decreased and the acidity of kimchi increased over time. Lactic acid bacteria, which are representative of fermentative microorganisms in the kimchi process showed rapid growth in the earlier stage of fermentation and increased steadily after 7 days. The counts of lactic acid bacteria were at a level of $10^4CFU/g$ early in the fermentation stage, reaching a level of $10^8CFU/g$ after 14 days, and at this point pH was 4.18 and acidity reached 0.63, indicating that the optimal state of kimchi fermentation. This study suggests that the lactic acid bacteria which were proliferated in kimchi during the ripening and fermentation could contribute to improving the taste and flavor of kimchi and inhibit the growth of pathogenic microorganisms that might exist in kimchi.

Studies on the Processings of Sterilized Salt-Fermented Anchovy Sauces (멸치액젓의 레토르트 식품화에 관한 연구)

  • Oh, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1038-1044
    • /
    • 1996
  • The salt-fermented anchovy sauce (AS) was packed in round No. 307-1 can, and thermally processed at $121.1^{\circ}C$ to obtain Fo values of 3, 5 and 10. The changes of food components and qualifies by thermal processing of sterilized AS (RAS) were examined. The compositions of AS were as followed; pH 6.81, VBN 394.7 mg/100g, total nitrogen 2,195.5 mg%, amino-nitrogen 1,010.5 mg%, and acidity 10.5 ml. Viable cell counts of AS on 0%, 5%, 20% NaCl-medium were $2.9{\times}10^3,\;9.1{\times}10^3$ and not detected, respectively. And viable cell counts of RAS were not detected. Acidity, total nitrogen and amino nitrogen contents of AS decreased slightly with the severeness of heat treatments, whereas pH and VBN content were increased. Total free amino acid contents of raw AS and RAS were 12,802.5 mg% and $11,212.6{\sim}12,105.4\;mg%$, and major amino acids were alanine, glutamic acid, leucine, isoleucine, valine and lysine. Also contents of IMP, hypoxanthine, TMAO and TMA in AS and RAS were 42.1 mg% and $35.5{\sim}40.9\;mg%$, 103.7 mg% and $103.1{\sim}105.5\;mg%$, 78.8 mg% and $58.2{\sim}71.6\;mg%$, 55.8 mg% and $58.9{\sim}68.5\;mg%$ respectively. And a little changes were observed in whole volatile components of AS with severeness of heat treatments by GC chromatogram patterns. Judging from the chemical and sensory evaluations, the Fo 3 heat treatment sample was not inferior to raw AS, and maintained good quality for 1 year storage.

  • PDF

A Study of Famous Traditional Kimchi in Pusan and Near Pusan Area (부산 및 부산근교의 명가김치 발굴을 위한 연구)

  • 문갑순;송영선;전영수
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 1996
  • Chinese cabbage Kimchi is a traditional fermented food and a numerous variety of Kimchies are produced in Korea. Most of Kimchis are produced on a small scale in the home for individual household use and recipes of Kimchis are deeply embedded in the individual cultures. Currently, however, factory-produced Kimchi is becoming popular by industrialization and changes of life style. This study was conducted to find out recipes of traditional Kimchis which are known delicious in Pusan and its environs and to develop a Kimchi with high quality. The characteristics of Kimchi recipes surveyed in Pusan and its environs are as follow: 1) Large amount of red pepper, garlic and anchovy sauce was used, which made Kimchi hot and spicy. 2) Extracts of dried anchovy or shrimp, or pear and onion juice was used to mix red pepper power. 3) Selection of good quality of Chinese cabbage and red pepper was very important step to determine quality of Kimchi. Furthermore, a numerous variety of submaterials added in Kimchi may also contribute to the high quality of Kimchi. 4) Salt concentration of Kimchi was around 2%, which was lower than it was generally known. Through this survey, it was suggested that maintaining low salt content of Chinese cabbage during salting make Kimchi crispy and juicy.

  • PDF