• Title/Summary/Keyword: salt tolerance mutants

Search Result 24, Processing Time 0.016 seconds

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

  • Xu, Houjuan;Zhang, Qianqian;Cui, Wenjuan;Zhang, Xiaofei;Liu, Weiyang;Zhang, Li;Islam, Md. Nurul;Baek, Kwang-Hyun;Wang, Yujun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1311-1319
    • /
    • 2016
  • Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease, significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK), comprise one of the most important signaling pathways determining the pathogenicity of diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a slower growth rate and altered colony morphology compared with the wild-type strain. Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation. AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very small lesions in wounded leaves, whereas typical lesions appeared on both intact and wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A. brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the growth, development, and pathogenicity of A. brassicicola.

Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1

  • Won, Seok-Jae;Jeong, Han Byeol;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.216-225
    • /
    • 2020
  • An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45℃ and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.

The Cell Wall Integrity MAP Kinase Signaling Pathway Is Required for Development, Pathogenicity, and Stress Adaption of the Pepper Anthracnose Fungus Colletotrichum scovillei

  • Teng Fu;Sung Wook Kang;Yong-Won Song;Kyoung Su Kim
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.178-185
    • /
    • 2023
  • The cell wall integrity (CWI) signaling pathway plays important roles in the dissemination and infection of several plant pathogenic fungi. However, its roles in the pepper fruit anthracnose fungus Colletotrichum scovillei remain uninvestigated. In this study, the major components of the CWI signaling pathway-CsMCK1 (MAPKKK), CsMKK1 (MAPKK), and CsMPS1 (MAPK)-were functionally characterized in C. scovillei via homology-dependent gene replacement. The ΔCsmck1, DCsmkk1, and ΔCsmps1 mutants showed impairments in fungal growth, conidiation, and tolerance to CWI and salt stresses. Moreover, ΔCsmck1, ΔCsmkk1, and ΔCsmps1 failed to develop anthracnose disease on pepper fruits due to defects in appressorium formation and invasive hyphae growth. These results suggest that CsMCK1, CsMKK1, and CsMPS1 play important roles in mycelial growth, conidiation, appressorium formation, plant infection, and stress adaption of C. scovillei. These findings will contribute to a better understanding of the roles of the CWI signaling pathway in the development of pepper fruit anthracnose disease.

Isolation of SYP61/OSMl that is Required for Salt Tolerance in Arabidopsis by T-DNA Tagging (애기장대에서 고염 스트레스 내성에 관여하는 OSM1/SYP61 유전자의 동정)

  • Kim, Ji-Yeon;Baek, Dong-Won;Lee, Hyo-Jung;Shin, Dong-Jin;Lee, Ji-Young;Choi, Won-Kyun;Kim, Dong-Giun;Chung, Woo-Sik;Kwak, Sang-Soo;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • Salt stress is one of major environmental factors influencing plant growth and development. To identify salt tolerance determinants in higher plants, a large-scale screen was conducted with a bialaphos marker-based T-DNA insertional collection of Arabidopsis ecotype C24 mutants. One line for salt stress-sensitive mutant (referred to as ssm1) exhibited increased sensitivity to both ionic (NaCl) and nonionic (mannitol) osmotic stress in a root growth assay. This result suggests that ssm1 mutant is involved in ion homeostasis and osmotic compensation in plant. Molecular cloning of the genomic DNA flanking T-DNA insert of ssm1 mutant was achieved by mutant genomic DNA library screening. T-DNA insertion appeared in the first exon of an open reading frame on F3M18.7, which is the same as AtSYP61. SSM1 is SYP61/OSM1 that is a member of the SNARE superfamily of proteins required for vesicular/target membrane fusions and factor related to abiotic stress.