• Title/Summary/Keyword: salt analysis

Search Result 1,391, Processing Time 0.036 seconds

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

Application of Roasting Pretreatment for Gold Dissolution from the Invisible Gold Concentrate and Mineralogical Interpretation of their Digested Products (비가시성 금정광의 효율적 용해를 위한 소성전처리 적용과 분해 잔유물에 대한 광물학적 해석)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;On, Hyun-Sung;Kim, Byung-Joo;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • In order to dissolve Au, Ag, and other valuable metals from gold ore concentrate, raw gold concentrate was pre-treated by roasting and salt-roasting at $750^{\circ}C$. The roasted concentrate was treated with aqua regia digestion to dissolve the valuable metals and higher amount of Au, Ag, and valuable metals were extracted from the roasted concentrates than from the raw concentrate. Higher amount of these metals were also extracted from the salt-roasted concentrate than from the roasted concentrate. The results of the gold dissolution experiments showed that the gold dissolution was most efficient when particle size, roasting temperature, and the percentage of added salt in salt roasting were about $181{\sim}127{\mu}m$, $750^{\circ}C$, and was 20.0%, respectively. The XRD analysis suggests that quartz and pyrite were not destroyed even through roasting at $750^{\circ}C$ and decomposition with aqua regia. However, through salt roasting, pyrite was completely decomposed, whereas quartz could not be destroyed through salt-roasting at $750^{\circ}C$ and aqua regia digestion. Accordingly, it was expected that the gold contained in quartz can not be dissolved through salt-roasting and treatment with aqua regia.

Studies on the Processing of Low Salt Fermented. Sea Foods 5. Processing Conditions of Low Salt Fermented Anchovy and Yellow Corvenia (저식염수산발효식품의 가공에 관한 연구 5. 저식염멸치젓 및 조기젓의 가공조건)

  • CHA Yong-Jun;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.206-213
    • /
    • 1985
  • Since a long time ago, more than thirty kinds of fermented fish product have traditionally been favored and consumed in Korea. In general, they fermented with $20\%$ of sodium chloride. However, it has been currently known that sodium chloride is one of causative ingredient for adult diseases. For that reason, reduced sodium salt diet is recently recommended in developed countries. This study was attempted to process low sodium salt fermented fish using anchovy, Engraulis japonica, and yellow corvenia, Psedosciaena manchurica, as raw materials with partially replacing the sodium salt with potassium chloride. The most favorable taste for fermented anchovy and yellow corvenia were revealed at 60 and 90 days fermentation, respectively. Judging from sensory evaluation with variance of analysis and orthogonal contrast method, little difference of taste were found when sodium salt was replaced with KCl even by $50\%$ as compared with conventional fermented fish. Taste for low salt fermented anchovy and yellow corvenia were the most favorable when they were prepared with $4\%$ salt, $4\%$ KCl, $6\%$ sorbitol, $0.5\%$ lactic acid and $4\%$ alcohol extract of red pepper as preservatives and flavor enhancers.

  • PDF

On the Seasonal Transports of Freshwater and Salt in the Tropical Atlantic Ocean (열대 대서양에서의 계절별 담수 및 염분의 수송)

  • Jung-Moon Yoo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.1.1-15
    • /
    • 1994
  • The transports of the seasonal freshwater and salt from surface to 500 m depth in the tropical Atlantic Ocean are derived from the equations of the continuity and saltconservation, respectively. The freshwater transport is obtained by southward integration of the divergence of surface freshwater flux, using climatological freshwater(i. e. precipitation, evaporation, and river discharge) data. The annual freshwater transport is northward, ranging from 0 Sv near the equator to 0.3 Sv at $12^{\circ}{\;}N{\;}and{\;}20^{\circ}{\;}S$. The seasonal meridional transport amounts of freshwater range from 1.35 Sv to-0.45 Sv. The strong northward freshwater transports prevail for the intraseasonal period summer to fall. This seasonal cycle is caused by the shifts of the ITCZ as well as the changes in the local freshwater storage. Annual and seasonal salt transports are calculated from objectively analyzed historical (1900-86) salinity observations. The annual salt flux in the ocean zero, showing that the salt flux by horizontal advection balances the flux by horizontal diffusion. The salt flux due to the diffusion is northward, and has a maximum of $5{\;}{\times}{\;}10^6kg/s$ at 15oN. Seasonal transport amounts of salt range from $30{\;}{\times}{\;}10^6kg/s{\;}to{\;}-35{\;}{\times}10^6kg/s$. The direction of the seasonal salt transports is northward except for the intraseasonal period summer to fall.

  • PDF

Effect of various additives on reduction of unpleasant odor and inhibition of Bacillus cereus growth in cheonggukjang (다양한 첨가제에 의한 청국장 불쾌취 및 Bacillus cereus 증식의 억제)

  • Jeong, Su-Hyeon;Park, Song-Yie;Jeong, Eun-Seon;Kim, Yong-Suk;Mun, Sung Phil
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.569-573
    • /
    • 2016
  • The effectiveness of various additives in reduction of an unpleasant odor and inhibition of Bacillus cereus growth in Cheonggukjang (CKJ) was investigated. Sensory evaluations of unpleasant odor intensity and taste preference for CKJ were conducted with a 5-point scale. Raw CKJ was rated to have the highest unpleasant odor intensity, followed by CKJ-salt, CKJ-wood vinegar salt, CKJ-red pepper seed oil, and CKJ-bamboo salt in the given order. The test panel had a greater preference for CKJ-red pepper seed oil than for the other CKJ products. The addition of bamboo salt to CKJ was the most effective in inhibition of B. cereus growth in comparison to the other three additives. Volatile compounds in CKJ and CKJ-bamboo salt were identified by GC/MS analysis. 1-Ethoxy-1-methoxy-ethane was responsible for the pleasant odor and its level significantly increased in CKJ-bamboo salt. Consequently, adding bamboo salt to CKJ not only masked and reduced the unpleasant odor, but also inhibited B. cereus growth in CKJ.

Changes of Efficacy of Antioxidant, Antidyslipidemic, Antidiabetic and Microbiological Characteristics in Fermented and Salt-treated Fermented Codonopsis lanceolata (발효 더덕 및 소금 처리 발효 더덕의 미생물 특성과 항산화, 항비만, 항당뇨 효능 변화)

  • Seong, Eun-Hak;Lee, Myeong-Jong;Kim, Hojun;Shin, Na Rae
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.106-114
    • /
    • 2018
  • Objectives: We investigated about the microbial properties and changes in the efficacy of the Codonopsis lanceolata (CL) by natural fermentation. Methods: CL was fermented for four weeks in a well-ventilated place with 2.5% salt. pH, total sugar, total polyphenol, and total flavonoid were measured to determine fermentation characteristics according to fermentation period and salt treatment. Polymerase chain reaction denaturing gradient gel electrophoresis and random amplification of polymorphic DNA-polymerase chain reaction were carried out for microbial analysis during fermentation. In addition, HepG2 cell was cultured to check the lipid accumulation through oil red O staining and the glucose uptake was analyzed by measuring the 2-NBDG at C2C12 cell. Results: The pH level and the total sugar decreased with the CL fermentation. Total polyphenol and flavonoid increased after CL fermentation. It was confirmed that Leuconostoc mesenteroides were maintained continuously during fermentation. In the salt treatment CL, there was a sharp increase in Rahnella aquatilis. Lactobacillus plantarum matrix was observed in fermented CL. In addition, Lactococcus lactis, Weissella koreensis, R. aquatilis, L. plantarum, Leu. mesenteroides have been added to the salt treatment. Glucose uptake were significantly increased after fermentation with salt for four weeks. Lipid accumulation in the HepG2 cells was observed that there was difference (P<0.01) between free fatty acid group (100%) and decreased 4 weeks after fermentation (90.38%) at $800{\mu}g/mL$. Conclusions: Total polyphenol and flavonoid were increased after CL fermentation. Especially, percentage of the glucose uptake and lipid accumulation inhibition increased in CL fermentation with salt. It is expected that fermentation of salt treated CL will be more effective in diabetes and fatty liver.

Comparison of the Mineral Contents of Sun-dried Salt Depending on Wet Digestion and Dissolution (습식분해 및 직접용해법에 따른 천일염 중 무기성분 함량 비교)

  • Jin, Yong-Xie;Je, Jeong-Hwan;Lee, Yeon-Hee;Kim, Jin-Hyo;Cho, Young-Suk;Kim, So-Young
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.993-997
    • /
    • 2011
  • The aims of this research were to determine the proximate composition of various salts and to compare two digestion methods (direct digestion without heating, and microwave digestion) for the determination of the main mineral contents of various salts. Twelve salt samples were divided into three groups of four samples each (imported, Korean gray, and Korean white salts). As a result, the NaCl contents of the Korean white, Korean gray, and imported salts were 85.1, 89.3, and 91.3%, respectively. The salts in the three groups were analyzed for their main mineral contents via AAS. The sodium (Na) content of the Korean white salt was found to be slightly lower than that of the imported salt while the magnesium (Mg) and potassium (K) contents of the Korean white salt were found to be higher than those of the imported salt. The mineral composition (% Na:Mg) obtained using microwave-assisted digestion procedures, and the other dissolutions for the subsequent sample analysis, were 89:1 (for both the imported and Korean gray salts) and 82:3 vs. 81:3 (Korean white salt), respectively. The data regarding the mineral contents and composition of the sun-dried salts obtained through the analysis method of wet digestion and the dissolution procedure were compared, and no significant difference was found between the two datasets. Consequently, in this paper, a direct dissolution procedure is suggested for the analysis of the mineral composition of salt.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso (곰소 염전에서 분리한 호염성 고세균의 특성 분석)

  • Koh, Hyeon-Woo;Kim, So-Jeong;Rhee, Sung-Keun;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • Most of halophilic archaea are found in the various hypersaline environments including solar saltern, salt lake with very high salt concentration. The present study is about isolation and characterization of halphilic archaea from Gomso solar saltern known as a representative high salt environment in Korea. In order to isolate the halophilic archaea, we prepared and used high salt medium. Finally, total 7 strains obtained were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological traits. All halophilic archaea belonged to Haloruburm, Halogeometriucm, Halobacterium, and Haloarcula genera. These isolates were all Gram-staining negative, and growth was not observed using nitrate as an alternative electron acceptor under anaerobic conditions. In addition, all isolates required about 12-30% (w/v, NaCl) salt. This case study might provide basic information on microbial isolation technologies and related research in halophilic microorganisms from domestic halophilic environments, and contribute to obtaining useful indigenous halophilic archaea in a variety of extreme environmental conditions.

Study on the Damage Mechanism by Salt of White Porcelain Figurine in Underglaze Iron (백자 철화 인물형 명기의 염 손상 메커니즘 연구)

  • Lee, Sun Myung;Jin, Hong Ju;Yun, Ji Hyeon;Kwon, Oh Young
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.368-382
    • /
    • 2020
  • It was confirmed that a white porcelain figurine in underglaze iron was damaged after exhibition. This study analyzes the current state of salt damage on the artifact and identifies the factors contributing to its deterioration by examining the material characteristics of the artifact and exhibition environment. The analysis will thus assist in preparing a conservation scheme for artifacts. The crystallized carbonate on the surface of the white porcelain figurine is a water-soluble alkali salt with high hygroscopicity and high solubility in water. This solubility increases as the temperature increases. The figurine was low-fired at approximately 1000℃. A lead glaze was applied, and thin cracks were formed on the glazed surface, indicating poor surface properties. Our analysis suggested that the showcase used in the exhibition likely created a moist environment resulting from condensation, as it was exposed to high temperature and relative humidity, particularly in comparison to the exhibition room where the temperature was regulated using an air conditioner. In addition, the artifacts in the showcase were exposed to sudden changes in temperature and relative humidity as the air conditioner was repeatedly turned on and off. Therefore, it can be deduced that the soluble salt remaining on the white porcelain figurine moved toward the surface of the relatively weak glaze as a result of the temperature, and the crystallized salt exacerbated surface damage as the moisture evaporated in a dry environment.