• 제목/요약/키워드: salinity tolerance

검색결과 223건 처리시간 0.031초

토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구 (Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity)

  • 유성제;이신애;원항연;송재경;상미경
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Drought and salinity stress response in wheat: physiological and TaNAC gene expression analysis in contrasting Egyptian wheat genotypes

  • El-Moneim, D. Abd;Alqahtani, Mesfer M.;Abdein, Mohamed A.;Germoush, Mousa O.
    • Journal of Plant Biotechnology
    • /
    • 제47권1호
    • /
    • pp.1-14
    • /
    • 2020
  • Drought and salinity are significant stressors for crop plants, including wheat. The relationship between physiological mechanisms and gene expression is important for stress tolerance. NAC transcription factors (TFs) play vital roles in abiotic stress. In this study, we assessed the expression of four TaNAC genes with some physiological traits of nine Egyptian wheat genotypes under different concentrations of PEG and NaCl. All the physiological traits that we assessed declined under both stress conditions in all genotypes. In addition, all the genes that we measured were induced under both stress conditions in young leaves. Shandaweel 1, Bani Seuf 7, Sakha 95, and Misr 2 genotypes showed higher gene expression and were linked with a better genotypic performance in physiological traits under both stress conditions. In addition, we found an association between the expression of NAC genes and physiological traits. Overall, NAC genes may act as beneficial markers for selecting for genotypic tolerance to these stress conditions in wheat.

Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity

  • Mukhtar, Salma;Malik, Kauser Abdulla;Mehnaz, Samina
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Saline soils comprise more than half a billion hectares worldwide. Thus, they warrant attention for their efficient, economical, and environmentally acceptable management. Halophytes are being progressively utilized for human benefits. The halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in the osmoregulation of halophytes. Microbial communities associated with the rhizosphere, phyllosphere, and endosphere of halophytes play an important role in plant health and productivity. Members of the plant microbiome belonging to domains Archaea, Bacteria, and kingdom Fungi are involved in the osmoregulation of halophytes. Halophilic microorganisms principally use compatible solutes, such as glycine, betaine, proline, trehalose, ectoine, and glutamic acid, to survive under salinity stress conditions. Plant growth-promoting rhizobacteria (PGPR) enhance plant growth and help to elucidate tolerance to salinity. Detailed studies of the metabolic pathways of plants have shown that plant growth-promoting rhizobacteria contribute to plant tolerance by affecting the signaling network of plants. Phytohormones (indole-3-acetic acid and cytokinin), 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, exopolysaccharides, halocins, and volatile organic compounds function as signaling molecules for plants to elicit salinity stress. This review focuses on the functions of plant microbiome and on understanding how the microorganisms affect halophyte health and growth.

Leveraging Rice Genetic Diversity: Connecting the Genebank to Mainstream Breeding

  • J. Damien Platten
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.31-31
    • /
    • 2022
  • Rice contains a wealth of genetic diversity, both within Oryza sativa and in related A-genome species. Decades of genetic research into this diversity have identified dozens of major genes contributing to a wide variety of important traits, including disease resistance, abiotic stress tolerance (drought, salinity, submergence, heat, cold etc.), grain quality, flowering date and maturity and plant architecture. Yet despite these opportunities, very few of the major genes and QTLs known have been successfully applied through rice breeding programs to produce sustained changes in farmer's fields. This presentation will briefly examine some of the factors limiting application of major genes in the mainstream breeding programs, and steps that have been taken to alleviate those limitations. As a result of these interventions, dozens of major genes that were previously unavailable to breeders are now being used confidently in the variety development process. Case studies will be discussed of genes critical for blast resistance worldwide, rice yellow mottle virus for Africa, and new validated QTLs for salinity tolerance.

  • PDF

Analyses of Inter-cultivar Variation for Salinity Tolerance in Six Korean Rapeseed Cultivars

  • Lee, Yong-Hwa;Lee, Tae-Sung;Kim, Kwang-Soo;Jang, Young-Seok;Nam, Sang-Sik;Park, Kwang-Geun
    • 원예과학기술지
    • /
    • 제30권4호
    • /
    • pp.417-425
    • /
    • 2012
  • Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. The aim of this study was to assess inter-cultivar (intraspecific) variation for salinity tolerance in six Korean rapeseed (Brassica napus L.) cultivars at the seedling stage. The effect of three different salinity stress levels (EC 4, 8, and 16 $dS{\cdot}m^{-1}$) on seedlings of six cultivars was investigated through leaf size, leaf dry weight, and leaf chlorosis. At the highest salinity level (16 $dS{\cdot}m^{-1}$), the mean decrease of leaf dry weight in 'Sunmang', 'Tammi', 'Tamla', 'Naehan', 'Youngsan', and 'Halla' was about 56.2, 56.9, 78.4, 79.3, 77.4, and 80.9%, respectively. 'Tammi' and 'Sunmang' showed much less reduction in leaf dry weight than all the other cultivars. In addition, diluted seawater treatments increased the occurrence of leaf chlorosis in six cultivars. At EC 8 and 16 $dS{\cdot}m^{-1}$, 'Naehan', 'Youngsan', and 'Halla' showed a higher level of leaf chlorosis than 'Tammi' 'Sunmang', and 'Tamla'. On the basis of these results, six cultivars were placed into salinity-tolerant and sensitive groups. 'Tammi' and 'Sunmang' were the salinity-tolerant cultivars, while 'Naehan', 'Halla', 'Youngsan', and 'Tamla' were the salinity-sensitive cultivars. 'Tammi' and 'Naehan' rated as the most tolerant and most sensitive cultivar, respectively. To further analyze protein expression profiles in 'Tammi' and 'Naehan', 2-D proteomic analysis was performed using the plants grown under diluted seawater treatments. We identified eight differentially displayed proteins that participate in photosynthesis, carbon assimilation, starch and sucrose metabolism, amino acid metabolism, cold and oxidative stress, and calcium signaling. The differential protein expressions in 'Tammi' and 'Naehan' are likely to correlate with the differential growth responses of both cultivars to salinity stress. These data suggest that 'Tammi' is better adapted to salinity stressed environments than 'Naehan'.

남해안 연초천에 서식하는 기수갈고둥의 생태적 특성 연구 (Ecological Characteristic of Clithon retropictus inhabitating in Yeoncho River in Southern Coastal Area)

  • 이수동;김미정;김지석
    • 한국환경생태학회지
    • /
    • 제32권6호
    • /
    • pp.591-602
    • /
    • 2018
  • 기수갈고둥(Clithon retropictus)은 염분농도, 물흐름, 지반조건 등 환경의 질을 판단할 수 있는 생물학적 지표종으로서의 가치가 높아 멸종위기야생생물 2급으로 지정되었으나 생리생태적인 특성에 대한 기초 연구는 여전히 부족한 실정이다. 이에 본 연구는 연초천 기수역을 대상으로 염분농도, 하상 토양입도 등의 환경조건이 개체크기, 밀도 등에 미치는 영향을 파악하고자 하였다. 기수역에서 생물의 분포에 영향을 미치는 핵심 변수인 염분농도를 조사한 결과 민물에서부터 기수에 해당하는 0~25‰ 범위를 나타내었다. 하상 입도는 연초보와 가까울수록 거친 자갈이 많아진 반면, 하류로 갈수록 모래보다 작은 입자의 비율이 증가했다. 개체수와 개체크기는 연초보를 중심으로 물이 정체되는 담수인 상류와 해수가 만나는 하류에서 급격히 감소한 것으로 미루어 염분농도에 대한 내성은 넓은 것으로 확인되었다. 하지만 양극단으로 갈수록 개체수와 개체크기가 줄어드는 것으로 나타나 적응성은 약해지는 것으로 분석되었다. 개체수 및 개체크기와 환경요인과의 상관관계를 분석한 결과, 염분농도와 하상입도 모두에 영향을 받는 것으로 나타났다. 염분농도와는 높을수록, 하상입도와는 모래보다 작은 입자가 많을수록 개체수는 감소하는 경향이었다. 개체크기와의 관계에서도 염분농도가 높은 하류로 갈수록 크기는 줄어들었다. 하상입도는 입자크기 19mm 이상인 자갈이 많아질수록 개체가 커지는 것으로 분석되었다.

Water temperature and salinity tolerance of embryos and spat of the mussel, Musculista senhousia

  • Liang, Zhuo Liang;Kim, Young-Hun;Zhang, Zhi Fang;Lim, Sang-Min;Kang, Kyoung-Ho
    • 한국패류학회지
    • /
    • 제25권3호
    • /
    • pp.179-187
    • /
    • 2009
  • The effects of water temperature and salinity on embryonic development and spat survival of mussel Musculista senhousia were investigated. Embryos were incubated in water ranging from 0 to $35^{\circ}C$ and with salinity from 5‰ to 40‰. Mussel spat were tested in water from 0 to $40^{\circ}C$ and with salinity from 0‰ to 100‰. The optimal conditions for mussel embryos were $20-25^{\circ}C$ and salinity from 25‰ to 35‰, based on Within this temperature range, higher temperatures correponded to a shorter duration of the embryonic period. Optimisation of mussel spat survival was at $25-35^{\circ}C$ and salinity from 30‰ to 40‰; both values are higher than those for embryo, which hinted M. senhousia embryos are more vulnerable than spat. Temperatures below $15^{\circ}C$ were lethal for embryos, making temperature a feasible method with which to control the large population of M. senhousia in ark-shell farm during its spawning period.

  • PDF