• Title/Summary/Keyword: salinity effects

Search Result 515, Processing Time 0.03 seconds

In vitro efficacy of formalin, hydrogen peroxide and copper sulfate on the scuticocilliate Uronema marinum at low salinity

  • Jee, Bo Young;Jo, Mi Ra;Kim, Jin Woo;Park, Mi Seon
    • Journal of fish pathology
    • /
    • v.15 no.3
    • /
    • pp.111-115
    • /
    • 2002
  • The scuticocilliate, Uronema marinum is a histophagous ciliate and the causative agent of 'scuticociliatosis'in cultured olive flounder Paralichthys olivaceus. In the present study, in vitro efficacy of hydrogen peroxide, formalin and copper sulfate on the scuticocilliate at low salinity was investigated. Each chemical showed synergistic parasiticidal effects with low salinity (salinity in 5 ppt) compared to each chemical alone (salinity in 33 ppt). At low salinity (5‰), ciliates were killed completely within 1.5h by exposure to 50ppm formalin (37% formaldehyde), at 100ppm hydrogen peroxide (30% solution) and at 100ppm copper sulfate (20% solution). The formalin was the most effective chemical against the parasites at low salinity.

Effects of pH Change by CO2 Induction and Salinity on the Hatching Rate of Artemia franciscana

  • Salma, Umme;Uddowla, Md. Hasan;Lee, Gi-Hun;Yeo, Young-Min;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • To understand the effects of lower pH levels due to elevated $CO_2$ and salinity, we designed and constructed a pH-control system that included automatic $CO_2$ infusion and measured the hatching rate of a crustacean model species, Artemia franciscana. The pH-control system was cost-effective and capable of performing animal tests in which pH fluctuated around $8.0{\pm}0.1$, with the temperature around $27{\pm}0.5^{\circ}C$. Hatching rate was observed under four different pH levels (7.0, 7.3, 7.6, and untreated control) combined with three salinity ranges (15, 25, and 35 ppt). The results demonstrated that lower pH levels led to decreased hatching rates regardless of salinity, and the minimum hatching rate was detected at pH 7.0 compared to the control (pH $8.0{\pm}0.1$), supporting the idea that OA has adverse effects on hatching rates and increases the risk of juveniles being introduced in the ecosystem. In contrast, salinity changes exhibited no synergistic effects with pH and had independent effects.

Effects of Microalgae and Salinity on the Growth of Three Types of the Rotifer Brachionus plicatilis

  • Cabrera Tomas;Bae Jean Hee;Bai Sungchul C.;Hur Sung Bum
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2005
  • We investigated the effects of salinity and three food species of microalgae on the growth of three types of the rotifer Brachionus plicatilis, with the aim of improving mass culture of rotifers in hatcheries. Three types (large, small, and ultra-small) of the rotifer were cultured at 16 ppt and 32 ppt salinity with the green algae Chlorella ellipsoidea, Nannochloris oculata, or Tetraselmis tetrathele. The maximum density and specific growth rate were compared for each rotifer type. Ultra-small rotifers grew significantly faster at 16 ppt salinity than at 32 ppt, and C. ellipsoidea and T. tetrathele promoted significantly higher growth than did N. oculata. However, small rotifers grew significantly better at 32 ppt salinity than at 16 ppt, and small rotifers fed on N. oculata achieved the highest density at 1,185 individuals/ml. Large rotifers grew faster at 16 ppt salinity than at 32 ppt, with a diet of T. tetrathele resulting in the fastest growth. Each type of rotifer thrived under different regimens of microalgae and salinity.

Combined Effects of Irradiance-Salinity and Temperature-Salinity on the Growth of Enteromorpha compressa (Chlorophyta) in Laboratory Culture (실내배양에서 해산 녹조 납작파래 (Enteromorpha compressa)의 생장에 미치는 광도와 염분 및 온도와 염분의 복합효과)

  • 김광용
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.219-224
    • /
    • 1993
  • The effects of environmental factors on the growth of Enteromorpha compressa germlings from Daeyulri (34$^{\circ}$36'N; 127$^{\circ}$47'E), the southern cost of Korea were examined in laboratory culture through combinations of irradiance and salinity and temperature and salinity. They showed a maximum growth rate at 125 $\mu$E.m-2.s-1 and 32$\textperthousand$ of irradiance and salinity combination, and at 15$^{\circ}C$ and 32% of temperature and salinity combination. Optimal parameters for the growth of germlings were 15$^{\circ}C$, 125 $\mu$E.m-2s-1 and 32$\textperthousand$. The germlings of E. compressa were survived in a wide range of irradiance, temperature and salinity levels, even though they had relatively low irradiance optimum. In the field E. compressa occurred commonly during autumn and spring seasons and disappeared in summer, except for particular habitats. This may be caused by the salinity and water temperature of this area rarely drop below 26$\textperthousand$ and 8$^{\circ}C$ during winter. A broad tolerance to environmental and rapid growth of germlings made them a wide geographical distribution over the world and a survival in both the upper and lower intertidal zones.

  • PDF

Effects of Saline Irrigation Water on Lettuce and Carrot Growth in Protected Cultivation (관개용수 염도수준에 따른 시설 상추 및 당근의 생육 영향 분석)

  • Jeon, Jihye;Jeong, Hanseok;Kim, Hakkwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.113-120
    • /
    • 2015
  • The objectives of this study were to monitor and assess the effects of saline irrigation water on lettuce and carrot growth in protected cultivation. One control and 4 treatments with three replications, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring results showed that the use of irrigation water containing above a certain level of salinity was found to cause excessive accumulation of salts in the soil as saline irrigation water increased electrical conductivity (EC) and sodium ($Na^+$) content in both lettuce and carrot soil samples, while tap water irrigation used as control decreased the salinity in the samples. The salinity higher than the threshold level of irrigation water was found to reduce the yields of lettuce and carrot, while in less than the threshold level the higher the salinity of the irrigation water increased the yields. The salinity of the irrigation water also appeared to increase the internal salinity of the plant as the $Na^+$ content in plant increased as the salinity of irrigation water increase. Increased $Na^+$ content was analyzed to be able to increase the sugar content in carrot. This study could contribute to suggest water quality criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Effects of Salinity on Survival, Oxygen Consumption, and Hematological Response of Greenling Hexagrammos otakii (쥐노래미(Hexagrammos otakii)의 생존율, 산소 소비율과 혈액 성상에 미치는 염분의 영향)

  • Oh, Sung-Yong;Myoung, Jung-Goo;Park, Jin Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.712-718
    • /
    • 2015
  • The effects of salinity on survival, oxygen consumption, and hematological response of greenling Hexagrammos otakii, mean body weight 147.1±3.8 g, were investigated under salinity conditions of 33.4 (control), 33.1, 32.8, 32.2, 31.0, 28.7, 23.9, 14.5, and 3.8 psu, to evaluate physiological effects in relation to changes in salinity. The survival and hematological responses of fish were measured at each salinity after 96- and 24-h exposures. The oxygen consumption rate (OCR) of fish was measured in triplicate under conditions of stepwise salinity exposure (33.4→33.1→32.8→32.2→31.0→28.7→23.9→14.5→3.8 psu) with an interval of 24 h at each salinity, using a continuous flow-through respirometer. No fish mortality was observed in the range of 33.4 to 14.5 psu, but the survival rate was reduced to 53.3% at 3.8 psu after 96 h of exposure. The OCRs did not significantly differ in the range between 33.4 to 28.7 psu (P>0.05), but significantly increased at 23.9 and 14.5 psu, and then dramatically decreased at 3.8 psu compared to the control (P<0.05). Hematological variables, such as glucose, glutamic pyruvic transaminase (GPT), hematocrit, and Na+, were affected by reduced salinity. This result may be applicable for habitat and culture management of greenlings.

Estimation Method of Airborne Salinity for Durability Design of Reinforced Concrete Structure (철근콘크리트 구조물의 내구성 설계를 위한 비래염분 추정방법)

  • Ham, Hee Jung
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.29-36
    • /
    • 2007
  • A comparative study of airborne salinity and sea wind was done for a coastal area, Sokcho city, of East Sea in Kangwon province, Korea. In this study, a relationship between the formation of airborne salinity and wind velocity was investigated, and then the airborne salinity was simulated and forecasted by the obtained wind-salinity characteristics. It is founded that most airborne salinity is brought by sea winds with the occurrence of velocity, higher than and equal to 4m/s, while the occurrence of lower wind velocities (ie., lower than 4m/s) in sea wind and the occurrence of inland wind give diluted effects on the airborne transfer. By using these characteristics and a proposed linear equation model, the salinity in Sokcho city is successfully simulated and forecasted. It is expected that the linear equation model may be useful for durability design of concrete structures under the conditions of chloride attack, induced by the airborne salinity.

  • PDF

Effects of Temperature, Salinity, and Silt and Clay on the Rate of Photosynthesis of laver, Porphyra yezoensis (양식김의 광합성에 미치는 수온, 염분 및 부이의 영향)

  • CHANG Sun-duck;CHIN Pyung;PARK Kie-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.335-340
    • /
    • 1983
  • The effects of water temperature, salinity, and silt and clay on the photosynthetic activity of Porphyra yezoensis were measured. The rate of photosynthesis of P. yezoensis increases as the water temperature rises in the range of $8{\sim}16^{\circ}C$ and begin to decrease at $18^{\circ}C$. In the salinity range of $21.5{\sim}33.5\%0$, the rate of photosythesis of P. yezoensis was increased in the sea water of $29.5\%0$ salinity and decreased in $21.5\%0$ salinity. The rates of photosynthesis of P. yezoensis were significantly decreased with increase of the concentration of silt and clay and the time of exposure to suspended silt and clay. Of the combined effects of salinity, and silt and clay on the photosynthetic activity of P. yezoensis, the effects of silt and clay were higher in the low salinity of $21.5\%0$ and $33.5\%0$. The wet weight of P. yezoensis showed a remarkable loss with increase of the concentration of silt and clay and the time of exposure to silt and clay.

  • PDF

Studies on the Root Development of the Rice Plants (Oryza sativa L.) in Accordance with Salt- diminution at the Saline Paddy Field (간척지의 숙답화에 따른 수도근군형성에 관한 연구)

  • 정원일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.3
    • /
    • pp.299-304
    • /
    • 1983
  • It has been ascertained by a few researchers that soil conditions under which the rice plants were cultivated have some effects upon the root formation of the rice plants. But, much is not known about the root formation of the rice plants cultivated in the saline paddy fields. The goal of the present investigation is to study morphological effects of the soil salinity on the development of the rice root system. The following results were obtained: 1. Under the conditions of higher soil salinity, root systems developed well at surface soil, however, root systems developed well and distributed evenly through surface and sub-soil at the saline fields where soil salinity was lower. 2. The rice plants cultivated in the higher soil salinity form less crown roots than the rice plants which cultivated at the lower soil salinity. 3. As for the formation of the stunted roots, it was found out that relatively rice plant cultivated in higher soil salinity forms more stunted roots than the rice plants cultivated in lower soil salinity. 4. The crown root cultivated in the higher soil salinity forms more lateral roots per unit langth than the root cultivated in lower soil salinity. 5. As for the root hair formation, the crown root cultivated in higher soil salinity bears less haired epidermis and shorter root hairs than the root cultivated in lower soil salinity.

  • PDF

Can Exogenous Betaine Be an Effective Osmolyte in Broiler Chicks under Water Salinity Stress?

  • Honarbakhsh, Shirin;Zaghari, Mojtaba;Shivazad, Mahmood
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1729-1737
    • /
    • 2007
  • A CRD experiment was conducted to evaluate the effects of different exogenous betaine levels (0.000, 0.075, 0.150 and 0.225 percent) on 576 one-day-old male broiler chicks (Ross) under water salinity stress. Different levels of water salinity were made by adding 3 levels of NaCl (0, 1,000 and 2,000 mg/L) to drinking water. Feed and water were available ad libitum. Betaine increased body weight, improved feed conversion ratio, and decreased packed cell volume (p<0.05). Water salinity promoted body weight over the whole period, increased feed intake (11 to 21 and 29 to 42-d) and also improved feed conversion ratio in grower and finisher periods (p<0.01). Breast weight, water consumption (28-d and 42-d) and excreta moisture (28-d) were increased by elevating the level of water salinity (p<0.01). Interaction between dietary betaine and water salinity was significant on plasma osmolarity as well as epithelial osmolarity of the duodenum at 28-d. Epithelial osmolarity was decreased from duodenum to ileum. The data imply that betaine is involved in the protection of intestinal epithelia against osmotic disturbance which can be caused by saline water, but further research is needed to investigate the effects of betaine with higher levels of water salinity.