• Title/Summary/Keyword: sales transaction comparison

Search Result 12, Processing Time 0.021 seconds

Market Approach to Valuation Based on Technology Transfer Cases in Korea

  • Kim, Sang-Gook;Lee, Hyun;Park, Hyun-Woo
    • Asian Journal of Innovation and Policy
    • /
    • v.2 no.1
    • /
    • pp.97-122
    • /
    • 2013
  • This study secured comparable sales transaction information of technology transfer corresponding to an active market conditions and proposes a method to assess the similarity of technologies with regard to comparability of technology transfer based on these cases information. In order to analyze the association and similarity between target technology and sales transactions, it proposes the significant factors affecting royalty decision and the cosine coefficient method by industry categories. It also proposes the method to adjust royalty, which means that this method unlike the conventional method provides clear standards to valuators in order to revise royalty. Therefore, it offers a solution to the difficulties of applying the market approach for a lot of valuators that have wanted to apply it and objective method to enhance the reliability of the value of intangible asset evaluated by the market approach.

Assessing the Economic Impact of Covid-19 through a Counterfactual Analysis

  • Hongjai Rhee
    • East Asian Economic Review
    • /
    • v.28 no.1
    • /
    • pp.69-94
    • /
    • 2024
  • The Covid-19 pandemic has caused unprecedented disruptions across industries worldwide. This paper aims to analyze the economic impact of the pandemic on the sales performance of basic commercial areas in Seoul, Korea. Using a regression analysis with credit card transaction data, the study underscores the critical nature of determining the reference point for comparison. Firstly, in comparison to the revenue in the same quarter before the onset of the pandemic, a significant decrease in revenue was observed across most categories during the pandemic periods. Secondly, when compared to the counterfactual revenue in the same period, extrapolated by an exponential smoothing forecasting, the overall revenue decrease during the periods was less pronounced, except in a few categories. Interestingly, certain categories appeared to witness marginal increases in sales after the pandemic. The paper discusses some policy implications of these findings.

A Study on Interpretative Principles Comparison of CISG.PICC.MISC for the Int'l Sales Contract of Goods (국제물품판매계약(國際物品賣買契約)을 위한 CISG.PICC.MISC상(上)의 해석원칙비교(解釋原則比較))

  • Oh, Se-Chang
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.13
    • /
    • pp.83-103
    • /
    • 2000
  • Through the this paper, a conclusion could be derived from CISG PICC MISC made by UNIDROIT, UNCITRAL, ICC of representative system making out a draft for uniform law, convention, trade usages. (1) In short, like most int'l sales rules applicable to commercial contracts, these rules play a supporting role, supplying answers to problems arising from transaction between the parties. (2) Though every one has in its own way a special feature, use of MISC made on the basis of actual facts which the parties are faced with their daily transactions, CISG and Incoterms being now in force, is desirable. (3) In case of use of MISC similar to a system of Incoterms, as PICC, it is necessary for MISC to set forth definitions about important terminology which is possible to give concerned parties confusion. (4) In a sense, PICC has a character complementing problems which CISG can not solve, therefore, if int'l agreement is given, it is desirable to adopt revised PICC adding specials conditions (A) of MISC as appendix of PICC such as Llouyd's Form in an appendix to MIA, as int'l convention.

  • PDF

Application of sequential analysis in internet shopping malls (인터넷 쇼핑몰에서의 축차분석법 활용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1009-1014
    • /
    • 2009
  • The Internet has changed the daily lives of human being in Korea and elsewhere in the world. It has changed the paradigms of traditional commercial activities and created immense opportunities for new business models. Recently, there has been much attention to the internet shopping mall as a means of commercial transaction. To make internet shopping mall competitive, effective customer satisfaction service should be provided and it is necessary to dynamic analysis method for customers' purchasing pattern. In this paper we apply the sequential analysis to comparison of two kinds of sales through the analysis of customers' purchasing pattern.

  • PDF

An Empirical Analysis on Determinant Factors of Patent Valuation and Technology Transaction Prices (특허가치 결정요인과 기술거래금액에 관한 실증 분석)

  • Sung, Tae-Eung;Kim, Da Seul;Jang, Jong-Moon;Park, Hyun-Woo
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.2
    • /
    • pp.254-279
    • /
    • 2016
  • Recently, with the conversion towards knowledge-based economy era, the importance of the evaluation for patent valuation has been growing rapidly because technology transactions are increasing with the purpose of practically utilizing R&D outcomes such as technology commercialization and technology transfer. Nevertheless, there is a lack of research on determinants of patent valuation by analyzing technology transactions due to the difficulty of collecting data in practice. Hence, to suggest quantitative determinants for the patent valuation which could be applied to scoring methods, 15 patent valuation models domestically and overseas are analysed in order to assure the objectiveness for subjective results from qualitative methods such as expert surveys, comparison assessment, etc. Through this analysis, the important 6 common determinants are drawn and patent information is matched which can be used as proxy variables of individual determinant factors by advanced researches. In addition, to validate whether the model proposed has a statistically meaningful effect, total 517 technology transactions are collected from both public and private technology transaction offices and analysed by multiple regression analysis, which led to significant patent determinant factors in deciding its value. As a result, it is herein presented that patent connectivity(number of literature cited) and commercialization stage in market influence significantly on patent valuation. The meaning of this study is in that it suggests the significant quantitative determinants of patent valuation based on the technology transactions data in practice, and if research results by industry are systematically verified through seamless collection of transaction data and their monitoring, we would propose the customized patent valuation model by industry which is applicable for both strategic planning of patent registration and achievement assessment of research projects (with representative patents).

A Study on Interactions of Competitive Promotions Between the New and Used Cars (신차와 중고차간 프로모션의 상호작용에 대한 연구)

  • Chang, Kwangpil
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2012
  • In a market where new and used cars are competing with each other, we would run the risk of obtaining biased estimates of cross elasticity between them if we focus on only new cars or on only used cars. Unfortunately, most of previous studies on the automobile industry have focused on only new car models without taking into account the effect of used cars' pricing policy on new cars' market shares and vice versa, resulting in inadequate prediction of reactive pricing in response to competitors' rebate or price discount. However, there are some exceptions. Purohit (1992) and Sullivan (1990) looked into both new and used car markets at the same time to examine the effect of new car model launching on the used car prices. But their studies have some limitations in that they employed the average used car prices reported in NADA Used Car Guide instead of actual transaction prices. Some of the conflicting results may be due to this problem in the data. Park (1998) recognized this problem and used the actual prices in his study. His work is notable in that he investigated the qualitative effect of new car model launching on the pricing policy of the used car in terms of reinforcement of brand equity. The current work also used the actual price like Park (1998) but the quantitative aspect of competitive price promotion between new and used cars of the same model was explored. In this study, I develop a model that assumes that the cross elasticity between new and used cars of the same model is higher than those amongst new cars and used cars of the different model. Specifically, I apply the nested logit model that assumes the car model choice at the first stage and the choice between new and used cars at the second stage. This proposed model is compared to the IIA (Independence of Irrelevant Alternatives) model that assumes that there is no decision hierarchy but that new and used cars of the different model are all substitutable at the first stage. The data for this study are drawn from Power Information Network (PIN), an affiliate of J.D. Power and Associates. PIN collects sales transaction data from a sample of dealerships in the major metropolitan areas in the U.S. These are retail transactions, i.e., sales or leases to final consumers, excluding fleet sales and including both new car and used car sales. Each observation in the PIN database contains the transaction date, the manufacturer, model year, make, model, trim and other car information, the transaction price, consumer rebates, the interest rate, term, amount financed (when the vehicle is financed or leased), etc. I used data for the compact cars sold during the period January 2009- June 2009. The new and used cars of the top nine selling models are included in the study: Mazda 3, Honda Civic, Chevrolet Cobalt, Toyota Corolla, Hyundai Elantra, Ford Focus, Volkswagen Jetta, Nissan Sentra, and Kia Spectra. These models in the study accounted for 87% of category unit sales. Empirical application of the nested logit model showed that the proposed model outperformed the IIA (Independence of Irrelevant Alternatives) model in both calibration and holdout samples. The other comparison model that assumes choice between new and used cars at the first stage and car model choice at the second stage turned out to be mis-specfied since the dissimilarity parameter (i.e., inclusive or categroy value parameter) was estimated to be greater than 1. Post hoc analysis based on estimated parameters was conducted employing the modified Lanczo's iterative method. This method is intuitively appealing. For example, suppose a new car offers a certain amount of rebate and gains market share at first. In response to this rebate, a used car of the same model keeps decreasing price until it regains the lost market share to maintain the status quo. The new car settle down to a lowered market share due to the used car's reaction. The method enables us to find the amount of price discount to main the status quo and equilibrium market shares of the new and used cars. In the first simulation, I used Jetta as a focal brand to see how its new and used cars set prices, rebates or APR interactively assuming that reactive cars respond to price promotion to maintain the status quo. The simulation results showed that the IIA model underestimates cross elasticities, resulting in suggesting less aggressive used car price discount in response to new cars' rebate than the proposed nested logit model. In the second simulation, I used Elantra to reconfirm the result for Jetta and came to the same conclusion. In the third simulation, I had Corolla offer $1,000 rebate to see what could be the best response for Elantra's new and used cars. Interestingly, Elantra's used car could maintain the status quo by offering lower price discount ($160) than the new car ($205). In the future research, we might want to explore the plausibility of the alternative nested logit model. For example, the NUB model that assumes choice between new and used cars at the first stage and brand choice at the second stage could be a possibility even though it was rejected in the current study because of mis-specification (A dissimilarity parameter turned out to be higher than 1). The NUB model may have been rejected due to true mis-specification or data structure transmitted from a typical car dealership. In a typical car dealership, both new and used cars of the same model are displayed. Because of this fact, the BNU model that assumes brand choice at the first stage and choice between new and used cars at the second stage may have been favored in the current study since customers first choose a dealership (brand) then choose between new and used cars given this market environment. However, suppose there are dealerships that carry both new and used cars of various models, then the NUB model might fit the data as well as the BNU model. Which model is a better description of the data is an empirical question. In addition, it would be interesting to test a probabilistic mixture model of the BNU and NUB on a new data set.

  • PDF

Effect of Market Basket Size on the Accuracy of Association Rule Measures (장바구니 크기가 연관규칙 척도의 정확성에 미치는 영향)

  • Kim, Nam-Gyu
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.95-114
    • /
    • 2008
  • Recent interests in data mining result from the expansion of the amount of business data and the growing business needs for extracting valuable knowledge from the data and then utilizing it for decision making process. In particular, recent advances in association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from the voluminous transactional data. Certainly, one of the major purposes of association rule mining is to utilize acquired knowledge in providing marketing strategies such as cross-selling, sales promotion, and shelf-space allocation. In spite of the potential applicability of association rule mining, unfortunately, it is not often the case that the marketing mix acquired from data mining leads to the realized profit. The main difficulty of mining-based profit realization can be found in the fact that tremendous numbers of patterns are discovered by the association rule mining. Due to the many patterns, data mining experts should perform additional mining of the results of initial mining in order to extract only actionable and profitable knowledge, which exhausts much time and costs. In the literature, a number of interestingness measures have been devised for estimating discovered patterns. Most of the measures can be directly calculated from what is known as a contingency table, which summarizes the sales frequencies of exclusive items or itemsets. A contingency table can provide brief insights into the relationship between two or more itemsets of concern. However, it is important to note that some useful information concerning sales transactions may be lost when a contingency table is constructed. For instance, information regarding the size of each market basket(i.e., the number of items in each transaction) cannot be described in a contingency table. It is natural that a larger basket has a tendency to consist of more sales patterns. Therefore, if two itemsets are sold together in a very large basket, it can be expected that the basket contains two or more patterns and that the two itemsets belong to mutually different patterns. Therefore, we should classify frequent itemset into two categories, inter-pattern co-occurrence and intra-pattern co-occurrence, and investigate the effect of the market basket size on the two categories. This notion implies that any interestingness measures for association rules should consider not only the total frequency of target itemsets but also the size of each basket. There have been many attempts on analyzing various interestingness measures in the literature. Most of them have conducted qualitative comparison among various measures. The studies proposed desirable properties of interestingness measures and then surveyed how many properties are obeyed by each measure. However, relatively few attentions have been made on evaluating how well the patterns discovered by each measure are regarded to be valuable in the real world. In this paper, attempts are made to propose two notions regarding association rule measures. First, a quantitative criterion for estimating accuracy of association rule measures is presented. According to this criterion, a measure can be considered to be accurate if it assigns high scores to meaningful patterns that actually exist and low scores to arbitrary patterns that co-occur by coincidence. Next, complementary measures are presented to improve the accuracy of traditional association rule measures. By adopting the factor of market basket size, the devised measures attempt to discriminate the co-occurrence of itemsets in a small basket from another co-occurrence in a large basket. Intensive computer simulations under various workloads were performed in order to analyze the accuracy of various interestingness measures including traditional measures and the proposed measures.

The Effect of Price Discount Rate According to Brand Loyalty on Consumer's Acquisition Value and Transaction Value (브랜드애호도에 따른 가격할인율의 차이가 소비자의 획득가치와 거래가치에 미치는 영향)

  • Kim, Young-Ei;Kim, Jae-Yeong;Shin, Chang-Nag
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.247-269
    • /
    • 2007
  • In recent years, one of the major reasons for the fierce competition amongst firms is that they strive to increase their own market shares and customer acquisition rate in the same market with similar and apparently undifferentiated products in terms of quality and perceived benefit. Because of this change in recent marketing environment, the differentiated after-sales service and diversified promotion strategies have become more important to gain competitive advantage. Price promotion is the favorite strategy that most retailers use to achieve short-term sales increase, induce consumer's brand switch, in troduce new product into market, and so forth. However, if marketers apply or copy an identical price promotion strategy without considering the characteristic differences in product and consumer preference, it will cause serious problems because discounted price itself could make people skeptical about product quality, and the changes of perceived value might appear differently depending on other factors such as consumer involvement or brand attitude. Previous studies showed that price promotion would certainly increase sales, and the discounted price compared to regular price would enhance the consumer's perceived values. On the other hand, discounted price itself could make people depreciate or skeptical about product quality, and reduce the consumers' positivity bias because consumers might be unsure whether the current price promotion is the retailer's best price offer. Moreover, we cannot say that discounted price absolutely enhances the consumer's perceived values regardless of product category and purchase situations. That is, the factors that affect consumers' value perceptions and buying behavior are so diverse in reality that the results of studies on the same dependent variable come out differently depending on what variable was used or how experiment conditions were designed. Majority of previous researches on the effect of price-comparison advertising have used consumers' buying behavior as dependent variable. In order to figure out consumers' buying behavior theoretically, analysis of value perceptions which influence buying intentions is needed. In addition, they did not combined the independent variables such as brand loyalty and price discount rate together. For this reason, this paper tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception. And we provided with theoretical and managerial implications that marketers need to consider such variables as product attributes, brand loyalty, and consumer involvement at the same time, and then establish a differentiated pricing strategy case by case in order to enhance consumer's perceived values properl. Three research concepts were used in our study and each concept based on past researches was defined. The perceived acquisition value in this study was defined as the perceived net gains associated with the products or services acquired. That is, the perceived acquisition value of the product will be positively influenced by the benefits buyers believe they are getting by acquiring and using the product, and negatively influenced by the money given up to acquire the product. And the perceived transaction value was defined as the perception of psychological satisfaction or pleasure obtained from taking advantage of the financial terms of the price deal. Lastly, the brand loyalty was defined as favorable attitude towards a purchased product. Thus, a consumer loyal to a brand has an emotional attachment to the brand or firm. Repeat purchasers continue to buy the same brand even though they do not have an emotional attachment to it. We assumed that if the degree of brand loyalty is high, the perceived acquisition value and the perceived transaction value will increase when higher discount rate is provided. But we found that there are no significant differences in values between two different discount rates as a result of empirical analysis. It means that price reduction did not affect consumer's brand choice significantly because the perceived sacrifice decreased only a little, and customers are satisfied with product's benefits when brand loyalty is high. From the result, we confirmed that consumers with high degree of brand loyalty to a specific product are less sensitive to price change. Thus, using price promotion strategy to merely expect sale increase is not recommendable. Instead of discounting price, marketers need to strengthen consumers' brand loyalty and maintain the skimming strategy. On the contrary, when the degree of brand loyalty is low, the perceived acquisition value and the perceived transaction value decreased significantly when higher discount rate is provided. Generally brands that are considered inferior might be able to draw attention away from the quality of the product by making consumers focus more on the sacrifice component of price. But considering the fact that consumers with low degree of brand loyalty are known to be unsatisfied with product's benefits and have relatively negative brand attitude, bigger price reduction offered in experiment condition of this paper made consumers depreciate product's quality and benefit more and more, and consumer's psychological perceived sacrifice increased while perceived values decreased accordingly. We infer that, in the case of inferior brand, a drastic price-cut or frequent price promotion may increase consumers' uncertainty about overall components of product. Therefore, it appears that reinforcing the augmented product such as after-sale service, delivery and giving credit which is one of the levels consisting of product would be more effective in reality. This will be better rather than competing with product that holds high brand loyalty by reducing sale price. Although this study tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception, there are several limitations. This study was conducted in controlled conditions where the high involvement product and two different levels of discount rate were applied. Given the presence of low involvement product, when both pieces of information are available, it is likely that the results we have reported here may have been different. Thus, this research results explain only the specific situation. Second, the sample selected in this study was university students in their twenties, so we cannot say that the results are firmly effective to all generations. Future research that manipulates the level of discount along with the consumer involvement might lead to a more robust understanding of the effects various discount rate. And, we used a cellular phone as a product stimulus, so it would be very interesting to analyze the result when the product stimulus is an intangible product such as service. It could be also valuable to analyze whether the change of perceived value affects consumers' final buying behavior positively or negatively.

  • PDF

Business Relationships and Structural Bonding: A Study of American Metal Industry (산업재 거래관계와 구조적 결합: 미국 금속산업의 분석 연구)

  • Han, Sang-Lin;Kim, Yun-Tae;Oh, Chang-Yeob;Chung, Jae-Moon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.115-132
    • /
    • 2008
  • Metal industry is one of the most representative heavy industries and the median sales volume of steel and nonferrous metal companies is over one billion dollars in the case America [Forbes 2006]. As seen in the recent business market situation, an increasing number of industrial manufacturers and suppliers are moving from adversarial to cooperative exchange attitudes that support the long-term relationships with their customers. This article presents the results of an empirical study of the antecedent factors of business relationships in metal industry of the United States. Commitment has been reviewed as a significant and critical variable in research on inter-organizational relationships (Hong et al. 2007, Kim et al. 2007). The future stability of any buyer-seller relationship depends upon the commitment made by the interactants to their relationship. Commitment, according to Dwyer et al. [1987], refers to "an implicit or explicit pledge of relational continuity between exchange partners" and they consider commitment to be the most advanced phase of buyer-seller exchange relationship. Bonds are made because the members need their partners in order to do something and this integration on a task basis can be either symbiotic or cooperative (Svensson 2008). To the extent that members seek the same or mutually supporting ends, there will be strong bonds among them. In other words, the principle that affects the strength of bonds is 'economy of decision making' [Turner 1970]. These bonds provide an important idea to study the causes of business long-term relationships in a sense that organizations can be mutually bonded by a common interest in the economic matters. Recently, the framework of structural bonding has been used to study the buyer-seller relationships in industrial marketing [Han and Sung 2008, Williams et al. 1998, Wilson 1995] in that this structural bonding is a crucial part of the theoretical justification for distinguishing discrete transactions from ongoing long-term relationships. The major antecedent factors of buyer commitment such as technology, CLalt, transaction-specific assets, and importance were identified and explored from the perspective of structural bonding. Research hypotheses were developed and tested by using survey data from the middle managers in the metal industry. H1: Level of technology of the relationship partner is positively related to the level of structural bonding between the buyer and the seller. H2: Comparison level of alternatives is negatively related to the level of structural bonding between the buyer and the seller. H3: Amount of the transaction-specific assets is positively related to the level of structural bonding between the buyer and the seller. H4: Importance of the relationship partner is positively related to the level of structural bonding between the buyer and the seller. H5: Level of structural bonding is positively related to the level of commitment to the relationship. To examine the major antecedent factors of industrial buyer's structural bonding and long-term relationship, questionnaire was prepared, mailed out to the sample of 400 purchasing managers of the US metal industry (SIC codes 33 and 34). After a follow-up request, 139 informants returnedthe questionnaires, resulting in a response rate of 35 percent. 134 responses were used in the final analysis after dropping 5 incomplete questionnaires. All measures were analyzed for reliability and validity following the guidelines offered by Churchill [1979] and Anderson and Gerbing [1988]., the results of fitting the model to the data indicated that the hypothesized model provides a good fit to the data. Goodness-of-fit index (GFI = 0.94) and other indices ( chi-square = 78.02 with p-value = 0.13, Adjusted GFI = 0.90, Normed Fit Index = 0.92) indicated that a major proportion of variances and covariances in the data was accounted for by the model as a whole, and all the parameter estimates showed statistical significance as evidenced by large t-values. All the factor loadings were significantly different from zero. On these grounds we judged the hypothesized model to be a reasonable representation of the data. The results from the present study suggest several implications for buyer-seller relationships. Theoretically, we attempted to conceptualize the antecedent factors of buyer-seller long-term relationships from the perspective of structural bondingin metal industry. The four underlying determinants (i.e. technology, CLalt, transaction-specific assets, and importance) of structural bonding are very critical variables of buyer-seller long-term business relationships. Our model of structural bonding makes an attempt to systematically examine the relationship between the antecedent factors of structural bonding and long-term commitment. Managerially, this research provides industrial purchasing managers with a good framework to assess the interaction processes with their partners and, ability to position their business relationships from the perspective of structural bonding. In other words, based on those underlying variables, industrial purchasing managers can determine the strength of the company's relationships with the key suppliers and its state of preparation to be a successful partner with those suppliers. Both the supplying and customer companies can also benefit by using the concept of 'structural bonding' and evaluating their relationships with key business partners from the structural point of view. In general, the results indicate that structural bonding gives a critical impact on the level of relationship commitment. Managerial implications and limitations of the study are also discussed.

  • PDF

The Influential Factor Analysis in the Technology Valuation of The Agri-Food Industry and the Simulation-Based Valuation Analysis (농식품 산업의 기술평가 영향요인 분석과 시뮬레이션 기반 기술평가 비교)

  • Kim, Sang-gook;Jun, Seung-pyo;Park, Hyun-woo
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.277-307
    • /
    • 2016
  • Since 2011, DCF(Discounted Cash Flow) method has been used initiatively for valuating R&D technology assets in the agricultural food industry and recently technology valuation based on royalties comparison among technology transfer transactions has been also carried out in parallel when evaluating the technology assets such as new seed development technologies. Since the DCF method which has been known until now has many input variables to be estimated, sophisticated estimation has been demanded at the time of technology valuation. In addition, considering more similar trading cases when applying sales transaction comparison or industry norm method based on information of technology transfer royalty, it is an important issue that should be taken into account in the same way in the Agri-Food industry. The main input variables used for technology valuation in the Agri-Food industry are life cycle of technology asset, the financial information related to the Agri-Food industry, discount rate, and technology contribution rate. The latest infrastructure building and data updating related to technology valuation has been carried out on a regular basis in the evaluation organization of the Agri-Food segment. This study verifies the key variables that give the most important impact on the results for the existing technology valuation in the Agri-Food industry and clarifies the difference between the existing valuation result and the outcome by referring the support information that is derived through the latest input information applied in DCF method. In addition, while presenting the scheme to complement fragment information which the latest input data just influence result of technology valuation, we tried to perform comparative analysis between the existing valuation results and the evaluated outcome after the latest of reference data for making a decision the input values to be estimated in DCF. To perform these analyzes, it was first selected the representative cases evaluated past in the Agri-Food industry, applied a sensitivity analysis for input variables based on these selected cases, and then executed a simulation analysis utilizing the key input variables derived from sensitivity analysis. The results of this study is to provide the information which there are the need for modernization of the data related to the input variables that are utilized during valuating technology assets in the Agri-Food sector and for building the infrastructure of the key input variables in DCF. Therefore it is expected to provide more fruitful information about the results of valuation.