• Title/Summary/Keyword: salamander limb regeneration

Search Result 9, Processing Time 0.021 seconds

Endogenous retinoic acid mediates the early events in salamander limb regeneration

  • Lee, Eugene;Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.462-468
    • /
    • 2012
  • Urodeles including newt and salamander have remarkable regenerative capacity during the postembryonic life span. Some of the unique features are the formation of the well-developed wound epidermis and the active dedifferentiation process in the early phase of regeneration. These are regarded as key events for the successful regeneration since no further regenerative activity is possible without them. In this study, we investigated the role of retinoic acid (RA) in salamander limb regeneration by blocking RA synthesis using disulfiram, an inhibitor of aldehyde dehydrogenase that oxidizes retinal to RA. Disulfiram treatment resulted in delaying the limb regeneration processes via inhibition of wound epidermis formation and dedifferentiation process. When RA was administered after disulfiram treatment, the inhibitory effect of disulfiram was rescued. In addition, disulfiram treatment after the dedifferentiation stage resulted in the mild retardation of limb regeneration, suggesting that RA might also be involved in the blastema outgrowth. Furthermore, salamander MMP-9 gene expression was also inhibited by disulfiram treatment. Collectively, our findings indicate that endogenous RA may play an important role(s) in the early phase of limb regeneration by regulating the expression of molecules responsible for the modification of intracellular and extracellular environment during salamander limb regeneration.

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

Protein Synthesis Pattern Analysis in the Regenerating Salamander Limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.145-150
    • /
    • 2000
  • Retinoic acid (RA) evokes pattern duplication in the regenerating salamander limb. Interestingly, it also enhances dedifferentiation in the regenerate by the morphological, histological and biochemical criteria. To examine whether there is any correlation between the RA-evoked pattern duplication and de novo protein synthetic profile in the regenerating salamander limb, especially during dedifferentiation, we analyzed stage-specific protein synthesis pattern in the normal and RA-treated regenerating limbs by metabolic labeling followed by two-dimensional gel electrophoresis. In the regenerating limbs without RA treatment, a few hundred kinds of proteins were found to be synthesized at the stage of wound healing and the total number of protein synthesized increased greatly as regeneration proceeded. The same trend was also observed in the RA-treated regenerating limbs. Interestingly, some protein spots were noted to be either newly synthesized or highly expressed by the RA treatment especially at the stage of dedifferentiation. The results shows that the enhancement of dedifferentiation state after the RA treatment correlates well with the protein synthesis profile, and suggest that those proteins are important for the RA-evoked pattern duplication in the regenerating limbs of salamander.

  • PDF

Effect of Retinoic Acid on Fgf-8 Expression in Regenerating Urodele Amphibian limbs

  • Han, Man-Jong;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.301-304
    • /
    • 2002
  • In our previous study, we have shown that Fgf-8 is expressed in the basal layer of the apical epithelial cap (AEC) and in the underlying thin layer of mesenchymal tissue of the regenerating limbs of Mexican axolotl, Amby-stoma mexicanum. Our present RT-PCR data also demonstrate that Fgf-8 transcript is localized both in the mesenchymal and epidermal tissues. To understand the effect of retinoic acid (RA) on the expression of Fgf-8 in the regenerating axolotl limbs, RA was injected intraperitoneally at the dediffer-entiation stage of limb regeneration. The RA treatment caused 8 change in the Fgf-8 expression profile of the regenerating limbs. In RA-treated limbs, duration of Fgf-8 expression was prolonged and a high level of expression was maintained during dedifferentiation and blastema formation stages. These results suggest that Fgf-8 is an important molecule in the process of pattern duplication of regenerating salamander limbs evoked by RA treatment.

Lysosomal Acid Phosphatase in Regenerating Salamander Limbs Studied with Monoclonal Antibodies (리소솜 Acid Phosphatase에 대한 단일 항체를 이용한 도롱뇽 다리 재생 연구)

  • 주봉건;박상렬;최의열;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.4
    • /
    • pp.426-436
    • /
    • 1996
  • In previous studies, we have shown that lysosomal add phosphatase (LAP) activity increases at the dedifferentiation stage in the regenerating larval limbs of salamander, Hynobius leechii. Monoclonal antibodies against LAP were generated to determIne the spatial and temporal distribution of the protein In the regenerates.A total of 22 monoclonal antihodies recognizIng different epftopes of the protein were obtained, of which five strongly stained the regenerating limb by imunohistochemistry. in LAP immunohistochemical examination, LAP showed distribution coincident with the state of dedifferentiation, both spatially and temporally, in the limb regenerates. When unfractioned protein of regenerating salamander limbs were separated by gel electrophoresis and immunoblotted, the antibodies recognized a single protein band of 53 kl)a, which comigrates with a monomerlc subunit of IAR Using the anti-IAP antibodIes as probe, we investigated the cross-reactivities of LAPs from other sources. The immunoreadive bands on Western blots appeared to be the same In molecular mass-53 kl)a in axoloti and Xenopus, but no protein band was detected in mouse, Drosophila, or C. elegans.These results show that the antibodies generated in this study spedfically recognize Hynoblus leeclili IAp and that IAPs may be highiy conserved among amphibians. Furthermore, the distdbution of the protein is consistent with a role for LAP in the dedifferentiation process of limb regeneration.

  • PDF

Dedifferentiation Correlates with the Expression of Lysosomal Acid Phosphatase in the Limb Regenerates of Mexican Axolotl (멕시코산 엑소로틀 다리 재생조직의 탈분화와 리소솜 산성탈인산화효소의 발현)

  • Seo, Kwang-Seok;Park, Sook-Kyung;Ju, Bong-Gun;Jeon, Sang-Hak;Kim, Won-Sun
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1998
  • The lysosomal acid hydrolases including lysosomal acid phosphatase (LAP) are believed to play an important role in intracellular and extracellular degradation. LAP was reported to increase its activity in dedifferentiation stage during urodele limb regeneration. In the paresent study, LAP localization in the Mexican axolotl (Ambystoma mexicanum) limb regenerates was investigated by immunohistochemistry. LAP immunoreactivity with monoclonal antibody against Korean salamander (Hynobius leehii) LAP was observed mainly in the wound epidermis, blastema cells, muscle, and cartilage which were under dedifferentiation process in axolotl limb regenerates. Moreover, LAP immunoreactivity increased gradually during the early phase of lib regeneration and reached the peak level at dedifferentiation stage. However, as redifferentiation begans, LAP immunoreactivity decreased slowly to the basal level. Retinoic acid (RA) which is known to induce skeleton pattern duplication in regenerating urodele limb appears to enhance LAP immunoreactivity. In the RA-treate limg regenerates, LAP immunoreactivity was higher than in the normal regenerates. In addition, the LAP expression period was more extended in the RA treated regenerates than in the normal regenerates. These results suggest that RA is involved in the extension of dedifferentiation state in RA-treated limb regenerate.

  • PDF

Dedifferentiation State Specific Increase of Trypsin- and Chymotrypsin-like Protease Activities during Urodele Limb Regeneration and Their Enhancement by Retinoic Acid Treatment (유미양서류 다리 재생 기간중 탈분화 시기 특이적 트립신, 키모트립신 유사 단백질 효소의 활성도 증가)

  • 이은호;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Treatment of regenerating amphibian limbs with retinoic acid (RA) is known to induce paftern duplication, which is closely related to the extent of dedifferentiation. In the present study, the activities of trypsin- and chymotrypsin-like proteases are examined to delineate a possible role in the process of dedifferentiation in the regenerating limbs of urodeles, the Korean salamander (Hynobius leechii) and the Mexican axolod (Ambystoma mexicanum). Specifically, we were interested to know if there is any correlation between trypsin- and chymotrypsin-like protease activities and the state of dedifferentiation which is augmented by RA treatment. We were also interested in expoloring if there is any species-specific difference in the profile of enzyme activities during limb regeneration. The results showed that the activities of these two enzymes reached a peak level at dedifferentiation stage, and RA treatment caused elevation of their activities, especially in the case of trypsin-like protease. The increase of trypsin-like protease activity after RA treatment was pronounced in the Korean salamander, which might reflect a species-specific responsiveness to RA. The present results imply that trypsin and chymotrypsin or similar proteases may play an active role in the process of dedifferentiation in regenerating limbs, and that trypsin or trypsin-like eryrymes might be involved in the RA-evoked enhancement of dedifferentiation which precedes overt pattern duplication.

  • PDF