• Title/Summary/Keyword: safety verification

Search Result 1,127, Processing Time 0.029 seconds

Application and Analysis of the Paradigm of Software Safety Assurance for a Digital Reactor Protection System in Nuclear Power Plants (원전 디지털 원자로보호계통 소프트웨어 안전보증 패러다임 적용 및 분석)

  • Kwon, Kee-Choon;Lee, Jang-Soo;Jee, Eunkyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.335-342
    • /
    • 2017
  • In the verification and validation procedures regarding the safety-critical software of nuclear power plants for the attainment of the requisite license from the regulatory body, it is difficult to judge the safety and dependability of the development, implementation, and validation activities through a simple reading and review of the documentation. Therefore, these activities, especially safety assurance activities, require systematic evaluation techniques to determine that software faults are acceptable level. In this study, a safety case methodology is applied in an assessment of the level and depth of the results of the development and validation of a manufacturer in its targeting of the bistable processor of a digital reactor protection system, and the evaluation results are analyzed. This study confirms the possibility of an effective supplementation of the existing safety demonstration method through the application of the employed safety case methodology.

Geometrical Product Specifications for Coordinate Measuring Machines (CMM의 기하학적 제품규격)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.319-322
    • /
    • 2007
  • This paper presents geometrical product specifications of acceptance and verification tests for coordinate measuring machines(CMM). These specifications include vocabulary, measuring size, rotary table with fourth axis, scanning measuring mode, multiple-stylus probing systems, measuring, and, estimation of errors in computing Gaussian associated features.

  • PDF

DEVELOPMENT OF BEST PRACTICE GUIDELINES FOR CFD IN NUCLEAR REACTOR SAFETY

  • Mahaffy, John
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.377-381
    • /
    • 2010
  • In 2007 the Nuclear Energy Agency's Committee on the Safety of Nuclear Installations published Best Practice Guidelines for the use of CFD in Nuclear Reactor Safety. This paper provides an overview of the document' contents and highlights a few of its recommendations. The document covers the full extent of a CFD analysis from initial problem definition and selection of an appropriate tool for the analysis, through final documentation of results. It provides advice on selection of appropriate simulation software, mesh construction, and selection of physical models. In addition it contains extensive discussion of the verification and validation process that should accompany any high-quality CFD analysis.

Secure methodology of the Autocode integrity for the Helicopter Fly-By-Wire Control Law using formal verification tool (정형검증 도구를 활용한 Fly-By-Wire 헬리콥터 비행제어법칙 자동코드 무결성 확보 방안)

  • An, Seong-Jun;Cho, In-Je;Kang, Hye-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.398-405
    • /
    • 2014
  • Recently the embedded software has been widely applied to the safety-critical systems in aviation and defense industries, therefore, the higher level of reliability, availability and fault tolerance has become a key factor for its implementation into the systems. The integrity of the software can be verified using the static analysis tools. And recent developed static analysis tool can evaluate code integrity through the mathematical analysis method. In this paper we detect the autocode error and violation of coding rules using the formal verification tool, Polyspace(R). And the fundamental errors on the flight control law model have been detected and corrected using the formal verification results. As a result of verification process, FBW helicopter control law autocode can ensure code integrity.

Verification Methods for Vulnerabilities of Airborne Object-Oriented Software (항공용 객체지향 소프트웨어에 대한 취약점 검증 방안)

  • Jang, Jeong-hoon;Kim, Sung-su;Lee, Ji-hyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2022
  • As the scale of airborne system software increases, the use of OOT (Object-Oriented Technology) is increasing for functional expansion, efficient development, and code reuse, but the verification method for airborne object-oriented software is conducted from the perspective of the existing procedure-oriented program. The purpose of this paper was to analyze the characteristics of OOT and the vulnerabilities derived from the functional characteristics of OOT, and present a verification method applicable to each software development process (Design, Coding and Testing) to ensure the functional safety integrity of aviation software to which OOT is applied. Additionally, we analyzed the meaning of the static analysis results among the step-by-step verification measures proposed by applying LDRA, a static analysis automation tool, to PX4, an open source used to implement flight control software.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Design Verification Method of Offshore Separation Systems Based on System Dynamics (시스템 다이내믹스 기반 해양구조물 분리시스템의 설계검증 방법에 관한 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong;Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2020
  • This paper proposes a design verification method based on system dynamics for offshore separation systems. Oil and gas separation systems are key components of offshore oil platforms; these systems determine the competitiveness of engineering, procurement, and construction (EPC) projects, especially in terms of added value. However, previous research on design verification has been limited to the process and deliverables of design. To address this, the study aims to develop a comprehensive design verification method and the associated functions from the perspective of project management, for the entire project life-cycle of offshore structures. The proposed methodology for design verification is expected to contribute toward effective and detailed designs as well as improve the competitiveness of EPC companies in constructing of shore structures during the early design stages. We first analyzed the separation system of the FPSO using the design verification method adopted by advanced countries and compared it with the system dynamics process formalized as ISO 15288. Subsequently, a tailored process for the design verification of the offshore structure was derived. It is shown that the proposed design verification method can be applied to the front-end engineering design process of of shore structures. Moreover, it can contribute toward the successful performance of offshore projects in the future and also minimize design changes and critical risks during the construction of these offshore structures.

Verification and Verification Method of Safety Class FPGA in Nuclear Power Plant (원자력발전소의 안전등급 FPGA 확인 및 검증 방법)

  • Lee, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.464-466
    • /
    • 2019
  • Controllers used in nuclear power plants require high reliability. A controller including a Field Programmable Gate Array (FPGA) and a Complex Programmable Logic Device (referred to hereinafter as FPGA) has been applied to many Nuclear Power Plants (NPP) in the past, including the APR1400 (Advanced Power Reactor 1400), a Korean digital nuclear power plant. Initially, the FPGA was considered as a general IC (Integrated Circuit) and verified only by device verification and performance testing. In the 1990s, research on FPGA verification began, and until the FPGA became a chip, it was regarded as software and the software Verification and Validation (V&V) using IEEE 1012-2004 was implemented. Currently, IEC 62566, which is a European standard, has been applied for a lot of verification. This method has been evaluated as the most sensible method to date. This is because the method of verifying the characteristics of SoC (System on Chip), which has been a problem in the existing verification method, is sufficiently applied. However, IEC 62566 is a European standard that has not yet been adopted in the United States and maintains the application of IEEE 1012 for FPGA. IEEE 1012-2004 or IEC 62566 is a technical standard. In practice, various methods are applied to meet technical standards. In this paper, we describe the procedure and important points of verification method of Nuclear Safety Class FPGA applying SoC verification method.

  • PDF

A Study on Simulation Based Fault Injection Test Scenario and Safety Measure Time of Autonomous Vehicle Using STPA (STPA를 활용한 자율주행자동차의 시뮬레이션 기반 오류 주입 시나리오 및 안전조치 시간 연구)

  • Ahn, Dae-ryong;Shin, Seong-geun;Baek, Yun-soek;Lee, Hyuck-kee;Park, Ki-hong;Choi, In-seong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.129-143
    • /
    • 2019
  • As the importance of autonomous vehicle safety is emphasized, the application of ISO-26262, a development verification guideline for improving safety and reliability, and the safety verification of autonomous vehicles are becoming increasingly important, in particular, SAE standard level 3 or higher level autonomous vehicles detect and decision the surrounding environment instead of the human driver. Therefore, if there is and failure or malfunction in the autonomous driving function, safety may be seriously affected. So autonomous vehicles, it is essential to apply and verity the safety concept against failure and malfunctions. In this study, we study the fault injection scenarios for safety evaluation and verification of autonomous vehicles using ISO-26262 part3 process and STPA were studied and safety measures for safety concept design were studied through simulation bases fault injection test.

EPLA(Electric Park Lock Actuator) System Safety Design Based on Vehicle Functional Safety Standard ISO 26262

  • Eun-Hye Shin;Hyun-Hee Kim;Kyung-Chang Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.239-248
    • /
    • 2023
  • In this paper, we conduct a study on the design that can secure the safety of the EPLA system by performing safety activities based on the ISO 26262 standard for vehicle functional safety. In the case of a company developing a detailed system, it is responsible for verification through hardware design and safety analysis in the overall flow of safety activities, and safety analysis according to the ASIL safety level must be properly performed. At this time, there are cases where the safety goal quantitative metric value suggested by the ISO 26262 standard cannot be satisfied only by the hardware design of the basic function, so it is necessary to design and install the safety mechanism. Based on ISO 26262 safety activities, it is possible to derive an effective design plan through hardware safety analysis.