• 제목/요약/키워드: safety rail

검색결과 706건 처리시간 0.032초

실시간 모니터링을 통한 레일절손 검지에 관한 연구 (A Study of Detecting Broken Rail using the Real-time Monitoring System)

  • 김태건;엄범규;이희성
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.1-7
    • /
    • 2013
  • Train accidents can be directly connected to fatal accidents-collision, derailment, Fire, railway crossing accidents-resulting in tremendous human casualties. First of all, the railway derailment is not only related to most of railway accidents but also it can lead to much more catastrophic accompanying train overtured than other factors. Therefore, it is most important factor to ensure railway safety. some foreign countries have applied to the detector machines(e.g., ultrasonic detector car, sleep mode, current detector, optical sensing, optical fiber). Since it was developed in order to prevent train from being derailed. In korea, the existing track method has been used to monitor rail condition using track circuit. However, we found out it impossible for Communication Based Train Control system(CBTC), recent technology to detect rail condition using balise(data transmission devices) without no track circuit. For this reason, it is needed instantly to develop real-time monitoring system used to detect broken rails. Firstly, this paper presents domestic and international statues analysis of rail breaks technology. Secondly, the composition and the characteristics of the real-time monitoring system. Finally, the evidence that this system could assumed the location and type of broken rails was proved by the experiment of prototype and operation line tests. We concluded that this system can detect rail break section in which error span exist within${\pm}1m$.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.

인적오류가 관여된 철도 사고의 체계적 분석을 위한 FRAM의 활용 (A FRAM-based Systemic Investigation of a Rail Accident Involving Human Errors)

  • 최은비;함동한
    • 대한안전경영과학회지
    • /
    • 제22권1호
    • /
    • pp.23-32
    • /
    • 2020
  • There has been a significant decline in the number of rail accidents in Korea since system safety management activities were introduced. Nonetheless, analyzing and preventing human error-related accidents is still an important issue in railway industry. As a railway system is increasingly automated and intelligent, the mechanism and process of an accident occurrence are more and more complicated. It is now essential to consider a variety of factors and their intricate interactions in the analysis of rail accidents. However, it has proved that traditional accident models and methods based on a linear cause-effect relationship are inadequate to analyze and to assess accidents in complex systems such as railway systems. In order to supplement the limitations of traditional safety methods, recently some systemic safety models and methods have been developed. Of those, FRAM(Functional Resonance Analysis Method) has been recognized as one of the most useful methods for analyzing accidents in complex systems. It reflects the concepts of performance adjustment and performance variability in a system, which are fundamental to understanding the processes of an accident in complex systems. This study aims to apply FRAM to the analysis of a rail accident involving human errors, which occurred recently in South Korea. Through the application of FRAM, we found that it can be a useful alternative to traditional methods in the analysis and assessment of accidents in complex systems. In addition, it was also found that FRAM can help analysts understand the interactions between functional elements of a system in a systematic manner.

도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발 (The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev)

  • 민병찬;허영태;홍두영;이원주;조수연;정남철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동 (Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam)

  • 고만기;김기동
    • 한국강구조학회 논문집
    • /
    • 제13권3호
    • /
    • pp.313-325
    • /
    • 2001
  • 14TON 밴 형식의 트럭에 대응할 수 있는 튜브형 트라이빔 교량난감을 제안하였다. 이 교량난간은 합성형 지주에 연결된 튜브형 트라이빔과 철재 가드빔으로 구성되어 있는데, 튜브형 트라이빔은 다양한 범퍼 높이를 갖는 차량에 대응할 수 있고 기존의 교량 난간에 비해서 교량난간의 시종점부와 가드레일 사이를 보다 완벽하게연결할 수 있는 장점이 있다. 가드레일 지주로 사용되는 것과 동일한크기의 철재 파이프에 콘크리트를 충전한 합성형지주가 단순히 철재 파이프의 크기를 키운 것보다 강성 및 극한강도를 증대시키는데 효율적임을 확인하였다. 개발된 시스템에 대하여 $14Ton-80km/h-15Y^{\circ}$의 충돌조건으로 실차 충돌실험을 실시하였는데 NCHRP Report 350의 실험레벨 4의 평가항목을 모두 만족하였다. 컴퓨터 시뮬레이션을 통하여 이 시스템이 국내의 S2 등급으로 분류될 수 있음을 보여주었다.

  • PDF

대만 고속전철 단순교의 레일-구조물 상호작용 해석 (Rail-Structure Interaction Analysis for Simple Span Bridges of the Taiwan High Speed Railway)

  • Yong-Gil Kim
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.130-135
    • /
    • 2001
  • 고속 전철 특징 중의 하나인 장대 레일의 사용으로 인하여 발생하는 추가 응력과 변위에 대하여 대만 고속전철 교량에 대해서 검토한다. 또한 대만 고속 전철 교량 시방 규정의 중요한 특징인 사용지진을 레일-구조물 해석에 고려하도록 하는 규정을 적용 후 단순교의 응력 및 상대변위를 검토한다. 지진 시 지반 운동을 고려하며, 단순교의 지진 응답을 변위로 레일-구조물 상호 작용 해석에 적용시킨다. 지진하중 고려 유무에 따른 단순교의 응력 및 상대 변위를 검토한다.

  • PDF

고무차륜 AGT 경량전철 차량의 고장시 안전시험 (Safety test of rubber-tired AGT light rail vehicle)

  • 김연수;임태건;이정선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.2024-2027
    • /
    • 2005
  • This study was aimed to prove the safety of rubber-tired AGT light rail vehicle, which was designed to have the redundant equipment for safety, so the experiment of this paper was operated in condition of malfunction which we made such as bake sequence test and momentary interruption test. The result can bes handled by Labview 7.0 and showed as the graph.

  • PDF

철도안전관리체계 비교 연구 (The Comparative Study for Railroad Safety Management System)

  • 정병현;문대섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.217-222
    • /
    • 2003
  • The purpose of this study is the suggestion for national railroad system policy at the changing environment such as rail restructuring and high speed rail open in 2004, especially railroad safety management system through the comparison between countries. This kind of comparative study will give the effective measure for building the safety management and ensuring their roles of organizations, construction authority and operating companies.

  • PDF

환경영향인자를 고려한 궤도수명산정 기법 개발 (Development of evaluation method for the railroad track life cycle considering environmental effect factors)

  • 공정식;정민철;김정훈;이원우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2011
  • Generally, the analysis of railroad wear data is most effective method for the efficient railway maintenance. The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

  • PDF