• 제목/요약/키워드: safety margins

검색결과 93건 처리시간 0.02초

Does reduction of the oncologic safety margin for facial basal cell carcinoma result in higher recurrence rates?

  • Kim, Eon Su;Yang, Chae Eun;Chung, Yoon Kyu
    • 대한두개안면성형외과학회지
    • /
    • 제22권3호
    • /
    • pp.135-140
    • /
    • 2021
  • Background: Wide surgical excision is the gold standard for basal cell carcinoma (BCC) treatment. Typically, resection requires a safety margin ≥ 4 mm. We aimed to confirm BCC excisions' cancer recurrence rate and safety on the facial region with new safety margins. Methods: We included patients with primary BCC on the facial region who underwent wide excision with 2- or 3-mm safety margins at our institution between January 2010 and December 2018. Medical records were reviewed to confirm the epidemiology and surgical information. Recurrence was confirmed by physical examination through regular 6-month follow-up. Results: We included 184 out of 233 patients in this study after applying the exclusion criteria. The mean age and follow-up period were 71.2±10.2 years and 29.3±13.5 months, respectively. The predominantly affected area was the nose (95 cases); a V-Y advancement flap was the most commonly used surgical method. There were two cases of recurrence in the 2 mm margin group and one recurrence in the group resected with 3 mm margins. Conclusion: In this large cohort study, we found 2-3 mm excision margins can yield enough safety in facial BCCs. The recurrence rates were found to be comparable with those reported after wider margins.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels

  • Strauss, Alfred;Mordini, Andrea;Bergmeister, Konrad
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.123-144
    • /
    • 2006
  • Reinforced concrete corbels are structural elements widely used in practical engineering. The complex response of these elements is described in design codes in a simplified manner. These formulations are not sufficient to show the real behavior, which, however, is an essential prerequisite for the manufacturing of numerous elements. Therefore, a deterministic and probabilistic study has been performed, which is described in this contribution. Real complex structures have been modeled by means of the finite element method supported primarily by experimental works. The main objective of this study was the detection of uncertainties effects and safety margins not captured by traditional codes. This aim could be fulfilled by statistical considerations applied to the investigated structures. The probabilistic study is based on advanced Monte Carlo simulation techniques and sophisticated nonlinear finite element formulations.

Prediction of Local Tumor Progression after Radiofrequency Ablation (RFA) of Hepatocellular Carcinoma by Assessment of Ablative Margin Using Pre-RFA MRI and Post-RFA CT Registration

  • Yoon, Jeong Hee;Lee, Jeong Min;Klotz, Ernst;Woo, Hyunsik;Yu, Mi Hye;Joo, Ijin;Lee, Eun Sun;Han, Joon Koo
    • Korean Journal of Radiology
    • /
    • 제19권6호
    • /
    • pp.1053-1065
    • /
    • 2018
  • Objective: To evaluate the clinical impact of using registration software for ablative margin assessment on pre-radiofrequency ablation (RFA) magnetic resonance imaging (MRI) and post-RFA computed tomography (CT) compared with the conventional side-by-side MR-CT visual comparison. Materials and Methods: In this Institutional Review Board-approved prospective study, 68 patients with 88 hepatocellulcar carcinomas (HCCs) who had undergone pre-RFA MRI were enrolled. Informed consent was obtained from all patients. Pre-RFA MRI and post-RFA CT images were analyzed to evaluate the presence of a sufficient safety margin (${\geq}3mm$) in two separate sessions using either side-by-side visual comparison or non-rigid registration software. Patients with an insufficient ablative margin on either one or both methods underwent additional treatment depending on the technical feasibility and patient's condition. Then, ablative margins were re-assessed using both methods. Local tumor progression (LTP) rates were compared between the sufficient and insufficient margin groups in each method. Results: The two methods showed 14.8% (13/88) discordance in estimating sufficient ablative margins. On registration software-assisted inspection, patients with insufficient ablative margins showed a significantly higher 5-year LTP rate than those with sufficient ablative margins (66.7% vs. 27.0%, p = 0.004). However, classification by visual inspection alone did not reveal a significant difference in 5-year LTP between the two groups (28.6% vs. 30.5%, p = 0.79). Conclusion: Registration software provided better ablative margin assessment than did visual inspection in patients with HCCs who had undergone pre-RFA MRI and post-RFA CT for prediction of LTP after RFA and may provide more precise risk stratification of those who are treated with RFA.

항공기 이륙추력 감소법 적용 (Application of Aircraft Reduced Takeoff Thrust Method)

  • 노건수
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.70-76
    • /
    • 2007
  • The benefits for using reduced takeoff thrust are many, ranging from lower maintenance and operating costs to improved engine and dispatch reliabilities. Some pilots, however, are apprehensive about using reduced thrust. They are particularly reluctant to use the maximum permissible level of reduced thrust. Two common arguments are (1)If reduced thrust is used, then the airplane will not be able to clear the obstacles if an engine fails during takeoff, and (2)If the maximum allowable assumed temperature is used, then there will be no stopping margin left if the takeoff is aborted. There is the notion that using reduced thrust sacrifices safety. The intent of this discussion is to: (1)Show that reduced thrust performance meets all regulatory requirements (2)Show that the Assumed Temperature method includes inherent extra performance margins (3)Show how to maximize performance margins while maximizing thrust reduction.

  • PDF

eXtended Statistical Combination of Uncertainties (XSCU) Method for Digital Nuclear Power Plants

  • In, Wang-Kee;Hwang, Dae-Hyun;Kim, Joon-Sung;Auh, Geun-Sun
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.617-627
    • /
    • 1998
  • A technically more direct Statistical Combination of Uncertainties (SCU) method, extended SCU (XSCU), was developed to statistically combine the uncertainties associated with the DNBR alarm setpoint and the DNBR trip setpoint of digital nuclear power plants. The Modified SCU (MSCU) method is currently used as the USNRC approved design method to perform the same function. In this study, the MSCU and XSCU methods were compared in terms of the total uncertainties, and the thermal margins to the DNBR alarm and trip setpoints. The MSCU method resulted in small total uncertainties due to large negative biases which are unphysical. The XSCU method gives virtually unbiased total uncertainties which are physically meaningful in order to represent the actual magnitude of the total uncertainties associated with the DNBR alarm and trip setpoints. But the thermal margins to the DNBR alarm and trip setpoints by the MSCU method agree with those by the XSCU method within allowable statistical Variations.

  • PDF

RELAP5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석;II:설계기준사고 (Analysis of Loss of Offsite Power Transient Using RELAP5/MOD1/NSC; II: KNU1 Design-Base Simulation)

  • Kim, Hyo-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.175-182
    • /
    • 1986
  • 원자력 1호기의 설계 기준 사고인 외부 전원 상실 사고를 열, 수력학적 최적 계산용 코드인 RELAP5/MOD1/NSC를 사용하여 모의하였다. 본 분석은 최적 계산모델로 수행되었으나, 사고 전개 및 가정등 보수성을 갖는 평가 방법에 의거하였다. 해석결과중 노심평균온도, 증기발생기 및 가압기 수위 등의 중요한 열·수력학적 변수를 원자력 1호기의 최종 안전성 분석보고서의 결과와 비교하였다. 본 해석결과에서 노심평균온도와 가압기 수위는 보다 낮게, 증기발생기 수위는 보다 높게 나타남으로써 더 향상된 안전한계치를 확인하였다. 이것은 본 해석에서 최적 열·수력 모델을 사용하였을 뿐만 아니라 초기치로써 최적 값을 택하였기 때문에 얻어지는 결과이며, 또한 이와 같은 유형의 산고 (2차 계통의 열제거 능력 상실 사고)에서 원자력 1호기의 안전성을 더욱더 입증시켜 주는 것이다.

  • PDF

Core Size Effects on Safety Performances of LMRs

  • Na, Byung-Chan;Dohee Hahn
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.645-650
    • /
    • 1997
  • An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). in the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow(ULOF) and the unprotected transient overpower (UTOP). Margins to fuel molting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events.

  • PDF

Reliability analysis by numerical quadrature and maximum entropy method

  • Zhu, Tulong
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.135-144
    • /
    • 1995
  • Since structural systems may fail in any one of several failure modes, computation of system reliability is always difficult. A method using numerical quadrature for computing structural system reliability with either one or more than one failure mode is presented in this paper. Statistically correlated safety margin equations are transformed into a group of uncorrelated variables and the joint density function of these uncorrelated variables can be generated by using the Maximum Entropy Method. Structural system reliability is then obtained by integrating the joint density function with the transformed safety domain enclosed within a set of linear equations. The Gaussian numerical integration method is introduced in order to improve computational accuracy. This method can be used to evaluate structural system reliability for Gaussian or non-Gaussian variables with either linear or nonlinear safety boundaries. It is also valid for implicit safety margins such as computer programs. Both the theory and the examples show that this method is simple in concept and easy to implement.

최적평가 방법론의 적용에 의한 대형냉각재 상실사고시의 원자로 안전여유도의 정량화 (Quantification of Reactor Safety Margins for Large Break LOCA with Application of Realistic Evaluation Methodology)

  • B.D. Chung;Lee, Y.J.;T.S. Hwang;Lee, W.J.;Lee, S.Y.
    • Nuclear Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.355-366
    • /
    • 1994
  • 미국원자력규제위원회에서는 최근 안전해석에 최적전산코드의 사용을 허용하는 개정된 비상노심냉각계통 평가 규정을 제시하였다. 당 규정에서는 계통해석에 최적전산코드를 사용할 경우 불확실성 평가를 수행할 것을 요구하고 있다. 본 논문에서는 이러한 비상노심냉각계통의 규제요건을 만족하는 실제적인 최적평가방법론을 개발하여 대형냉각재상실사고에 적용하였다. 최적평가전산코드로는 RELAP5/MOD3.1을 개선한 RELAP5/MOD3/KAERI를 사용하였으며, 코드의 불확실성은 수개의 분리효과 및 총체효과 실험에 대한 평가를 수행함으로써 정량화 하였다. 적용대상 발전소로는 고리 3 & 4호기를 선정하였다. 민감도 분석을 통하여 응답방정식을 구성하였으며 각 응답방정식에 대하여 무작위 추출방식, Monte Carlo 방식으로 확률밀도함수를 구하였다. 최종 불확실성은 95%의 신뢰도로 정량화 하였으며 대형냉각재 상실사고시의 안전여유도에 대하여 논의하였다.

  • PDF