• Title/Summary/Keyword: safety factor and displacement

Search Result 184, Processing Time 0.029 seconds

Structural Analysis of Deformation and Force on Base Frame by Materials of Processed Food Equipment (가공식품 설비의 재질별 베이스 프레임에 관한 변형 및 하중 구조해석)

  • Kim, Ki-Hong;Kim, Seok-Ho;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.741-746
    • /
    • 2022
  • In this paper, structural analysis was conducted on the base frame for materials of the conveyor system that automatically produces nurungji. The materials of the base frame were selected as SS400, STS304, Al6063-5. Structural analysis performed Von-Mises stress and maximum displacement for 38 hot plates in real situation, and performed weight of distribution force for yield strength, and calculated safety factor. SS400 and STS304 have little displacement, but Al6063-5 is deformed to 0.149mm, which is 2.6 times greater than other materials. However, since the safety factor was calculated as 8.5, it can be applied to the applicable food processing equipment. The weight of the distributed force for the yield strength of the materials was 17.7kN for SS400, 14.7kN for STS304, and 10.2kN for Al6063-T5. When manufacturing other processed foods with a base frame of the same size, a material suitable for the corresponding weight should be selected.

Study on the Deflection Characteristics of Rotating Drive by Weight Compensation (하중 보상을 이용한 회전 구동부의 처짐 특성 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.790-795
    • /
    • 2018
  • In this study, we analyzed the structural safety and vibration characteristics of rotational drive in 3D CT scan equipment using finite element analysis. The analysis results showed a safety factor of 9.2 and a left and right vertical deflectional deviation of 0.24mm from the maximum equivalent stress. After applying weight compensation of 27.7kgf, the structural analysis reduced the safety factor to 7.6, but the deflectional deviation of the left and right structure was reduced to 0mm. Also, we presented the optimum design of rotational drive through the vibration analysis.

Experimental investigation of lateral displacement of PVD-improved deposit

  • Chai, Jin-Chun;Xu, Fang
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.585-599
    • /
    • 2015
  • Laboratory model tests were conducted to investigate the effect of surcharge loading rate on the magnitude of lateral displacement of prefabricated vertical drains (PVDs) improved deposit. The test results indicate that under the condition that the system had sufficient factor of safety (FS) ($FS{\geq}1.2$), for the similar model ground under the same total applied surcharge load, the lateral displacement increases with the increase of loading rate. The test results have been used to check the validity of a previously proposed method for predicting the maximum lateral displacement, and it shows that the data points are around the middle line of the predicted range, which supports the usefulness of the proposed method. The basic idea of the prediction method is an empirical relationship between the normalized lateral displacement (NLD) and a ration of load to the undrained shear strength of the deposit (RLS). The model test results offer some modifications of the NLD-RLS relationship: (1) instead of a bilinear relationship, NLD-RLS relationship may be entirely nonlinear; (2) the upper bound value of RLS for the proposed method can be used may be limited to 2.1 instead of the originally proposed value of 3.0.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

Coupling Effects in Rainfall-induced Slope Stability Considering Hydro-mechanical Model (강우침투에 의한 비탈면 안정해의 수리-역학적 모델을 이용한 커플링 효과)

  • Kim, Yong-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.5-15
    • /
    • 2015
  • In this study, rainfall-induced slope stability and coupling effect are investigated using hydro-mechanical finite element model. This model is developed by formulating constitutive and coupled balance equations and is verified by comparing the numerical results with field matric suction. The homogeneous soil layer (soil column) and soil slope are modeled by this model, and the results of variation in matric suction, mean effective stress, porosity, displacement, factor of safety are compared with those of staggered analysis. It is found that the vertical and horizontal displacement from coupling analysis considering change in porosity is larger than that of staggered analysis. The displacement and matric suction from coupling analysis by rainfall infiltration can affect slope instability, which shows a progressive failure behavior. The lowest factor of safety is observed under short-term rainfall. This results confirm the fact that coupling analysis is needed to design soil slope under severe rain condition.

Structural Safety Evaluation of Stabbing System for Pre-Piling Jacket Substructure Considering Pile Construction Errors (파일의 시공오차를 고려한 스태빙시스템의 구조안전성 평가)

  • Youngcheol Oh;Jaeyong Ryoo;Daeyong Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.109-119
    • /
    • 2023
  • A structural safety evaluation was conducted for the stabbing system for the pre-piling jacket substructure currently being developed in South Korea, considering pile construction errors due to its lateral movement that may occur during construction in the ocean. Based on (1) the maximum stress generated by the stabbing system, (2) the maximum rotational displacement of the guide cone, and (3) the maximum stress generated by the horizontal hydraulic pressure cylinder, the structural safety of the stabbing system was examined under the initial loading condition and three possible load combinations during its construction. In order to evaluate the structural safety of the stabbing system, a concept of stress safety factor (= Yield stress / Max. Von-Mises stress) was used. It was found that the stabbing system considered in this study has a sufficient margin of safety.

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF