• Title/Summary/Keyword: safety design

Search Result 9,584, Processing Time 0.033 seconds

A study on Selection Method of Safety Devices According to Process Trouble (공정 트러블에 따른 안전장치 선택방법에 관한 연구)

  • Ko, Jae-Wook;Jung, In-Hee;Jung, Sang-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.52-60
    • /
    • 2009
  • This study reflects the concept of risk-based design to present a systematic design means and a method to adjust regulations and standards towards a more reliable direction within the current law. In order to enhance the early design concentration and level in the part of safety design, a new Advanced Safety Analysis Table (ASAT) was developed to provide information on the systematized safety design element from the early design phase. Furthermore, a guideline was put forth about the selection of a safety device according to process trouble, on the basis of the ASAT. To apply the proposed ASAT and the selection method of a safety device according to process troubles, the ASAT was executed for the PGC (Process Gas Compressor) of the NCC (Naphtha Cracking Center), and the result of selecting the safety device was analyzed according to process trouble.

  • PDF

Development Plan of Design for Safety in Construction (설계안전성 검토(DfS) 발전방안)

  • Shin, Ju Yeoul
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.351-356
    • /
    • 2017
  • This study introduces the current status of the design for safety(DfS) introduced as one of the owner - centered construction site safety management plan, and presents the problems and the improvement plan. The design for safety has been shifting from the construction management-oriented safety management to the owner-centered safety management system, The owner has to make the design considering the safety from the design stage centered on the owner. The owner has to review and approve the adequacy of the safety-conscious design and The risk factors that can not be eliminated during design are the system to prevent the disaster at the construction site by planning to eliminate the risk factor when writing the safety management plan that is made at the construction stage. The design for safety system implemented from May 2016 will be further developed to prevent the risk of safety accidents that may occur in construction sites, contributing greatly to the reduction of construction accident. In addition, it suggests ways to develop more efficient and convenient system through continuous hazard finding and system improvement.

Safety Management Priority Classified by Participants in Planning & Design Stages (국내 건설공사 초기단계에서의 참여주체별 중점안전관리항목 조사연구)

  • Song, Do-Heom;Yeo, Sang-Ku;Go, Seong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • The safety accidents of domestic construction happened more than other industries is performed only under the construction stage. In the foreign countries, however, owners and designers play an important role on safety in an early stage. Therefore, numerous studies were carried out by getting rid of accident risks and institutionalizing prevention activities in an construction stages. Accordingly, this study have performed to deduce the pivotal point of safety management items classified by the subject suitable for construction by introducing of safety conception of domestic and international design and suggested the improvement methods of safety management plans of the planning design stage so as to perform more efficient safety management.

Review and Proposal for Seismic Safety Assessment of Nuclear Power Plants against Beyond Design Basis Earthquake (설계초과 지진에 대한 원전 지진안전성 평가기술 고찰 및 제언)

  • Choi, In-Kil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • After Kyeongju earthquake occurred in September 12, 2016, the seismic safety of nuclear power plants became important issue in our country. The seismic safety of nuclear power plant against beyond design basis earthquake became very important to secure the public safety. In this paper, the current status of the seismic safety assessment methodology is reviewed and some aspects for the reliability improvement of the seismic safety assessment results are proposed. Seismic margin analysis and probabilistic seismic safety assessment have been used for the seismic safety evaluation of a nuclear power pant. The basic procedure and the related issues and proposals for the probabilistic seismic safety assessment are investigated.

Development of a 2-axis Delta Robot for Upper-limb Rehabilitation with Considering User Safety (사용자 안전요소를 고려한 상지 재활치료용 2축 델타로봇 개발)

  • Seung-Hwan Baek;Jun-Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • In this study, an end-effector robot which is a two-axis delta robot type for upper-limb rehabilitation is designed. It is not only rehabilitation functions that has designed robot but also mechanical and electrical safety devices were constructed to ensure patient safety. By constructing the two-axis delta robot is combined with an LM guide, the operating range and rigidity required for rehabilitation were secured. The electrical safety system which is required for the medical robot was designed, and a safety strategy was established to ensure patient safety and it is applied in the integrated safety circuit. The safety is considered in whole design process from the robot's mechanical design to the electric control unit.

Effectiveness of Fatal Fall Accident Prevention through Design for Safety in Construction Industry (건설공사의 추락재해예방을 위한 설계안전기법의 효과성 분석)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • Construction industry is considered as one of the most high-risk industries for work-related injuries and fatalities, accounting for more than half of fatalities in Korea. Advanced countries have recognized the critical role of designers in preventing construction accidents and have established regulations on design for safety. In line with this, the Korean government have also implemented regulations that require owners and designers to review the safety of design outcomes. However, it has been observed that designers face challenges in identifying hazards and integrating design solutions at the design stage mainly due to their shortage of required knowledge and skills. This study aimed to examine design solutions that can be applied to prevent fall accidents in the construction industry, and to establish a relationship between these solutions and fatal fall accidents occurred over the past three years in Korea. This study also analyzed the relationships of four variables (construction type, cost, work type, and fall location) with design solutions. The results indicated that all four variables have significant relationships with design solutions, with fall location showing the strongest relationship. The design solutions and their relationships with fatal fall accidents identified in this study can be utilized in identifying hazard and integrating design solutions to ensure design for safety.

Application of Information-theoretic Measure (Entropy) to Safety Assessment in Manufacturing Processes

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • Design of manufacturing process, in general, facilitates the creation of new process that may potentially harm the workers. Design of safety-guaranteed manufacturing process is, therefore, very important since it determines the ultimate outcomes of manufacturing activities involving safety of workers. This study discusses application of information-theoretic measure (entropy) to safety assessment of manufacturing processes. The idea is based on the general principles of design and their applications. Some examples are given.

Development of Web-based Design Review System for Reliability and Safety Knowledge Management

  • Otsuka, Yuichi;Yukawa, Takashi;Mutoh, Yoshiharu
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.22-28
    • /
    • 2010
  • This paper describes a web-based design review system as a knowledge management system relating reliability and safety system design. Since people's consciousness for safety and security become sensitive and increases the need of establishing a proactive prevention method for internal failures and relating risks in products. It also means that prevailing tacit knowledge in retired workers, in order to transform them to be easily used to support new system development, become more important. When considering safety and reliability design, at least two data sheet are necessary; Failure Modes and Effects Analyses (FMEA) and Risk Assessment (RA). These two data are practically made separately. However, it includes the concerns that a risk by failures during long-term use may not be noticed. To overcome this insufficiency, a support tool for integrating reliability evaluation and risk assessment data simultaneously is expected to be revealed. The authors have then developed a web-based design review system for reliability and safety system design. The system include various profitable functions; making FMEA and RA sheet, retrieving past data sheet for engineering change management and new product development and web-based discussion to increase the efficiency of discussion. The system is applied to one practical development works in order to demonstrate its effectiveness that is to be made clear by interviewing user's qualitative comment.

Evaluation for Relative Safety of RC Slab Bridge of Applying Limit State Design Code on Korean Highway Bridge (도로교설계기준 한계상태설계법을 적용한 RC슬래브교의 상대 안전도 평가)

  • Park, Jin-Woo;Hwang, Hoon-Hee;Kang, Sin-Oh;Cho, Kyung-Sik;Park, Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.41-48
    • /
    • 2013
  • This paper is intended to provide the background information and justification for Korean highway bridge design code(limit state design)(2012). Limit state design method calculates reliability index and probability of failure through the analysis of the reliability of the experimental database. It has become possible to perform the economical and consistent design by evaluating the safety of a structure quantitatively. In this paper, we used the design specifications of RC slab bridge of superstructure form of Road Design Manual in Part 5 bridge built in highway bridge. This study conducted structural analysis using the method of frame structure theory, design and analysis of bridge by limit state design method, the design code including various standards and Load model applied Korean highway bridge design code limit state design(KHBDC;2012). As a result, it analyzed the effect of safety through comparison. Showing effect of improvement the safety factor and comparing the value of the result, it is determined to be capable of economical design and safety. Furthermore, limit state design method was able to determine many redundant force of cross-section compared with existing design method. It is determined that it can reduce the overall amount because of the reduction of the cross-section and girder depth.

NUWARD SMR safety approach and licensing objectives for international deployment

  • D. Francis;S. Beils
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1029-1036
    • /
    • 2024
  • Drawing on the deep experience and understanding of the principles of nuclear safety, as well as many years of nuclear power plant design and operation, the EDF led NUWARD SMR Project is developing a design for a Small Modular Reactor (SMR) of 340 MWe composed of two 170 MWe independent units, that will supplement the offering of high-output nuclear reactors, especially in response to specific needs such as replacement of fossil-fuelled power plants. NUWARD SMR is a mix of proven and innovative design features that will make it more commercially competitive, while integrating safety features that comply with the highest international standards. Following the principles of redundancy and diversity and rigorous application of Defence in Depth (DID), with an international view on nuclear safety licensing, the Project also incorporates new safety approaches into its design development. The NUWARD SMR Project has been in development for a number of years, it entered conceptual design formally in mid-2019 and entered Basic Design in 2023. The objective of the concept design phase was to confirm the project technological choices and to define the first design configuration of the NUWARD SMR product, to document it, in order to launch pre-licensing with the French Safety Authority (ASN) and to define its estimated cost and its subsequent development and construction schedules. As a delivery milestone the Safety Options file (called the Dossier d'Options de Sûreté (DOS)) has been submitted to ASN in July 2023 for their opinion. An integral part of the NUWARD SMR Project, is not only to deliver a design suitable for France and to satisfy French regulation, but to develop a product suitable and indeed desirable, for the international market, with a first focus in Europe. In order to achieve its objectives and realise its market potential, the NUWARD SMR Project needs to define and realise its safety approach within an international environment and that is the key subject of this paper. The following paper: • Summarises the foundation principles and technological background which underpin the design; • Contextualises the key design features with regard to the international safety regulatory framework with particular emphasis on innovative passive safety aspects; • Illustrates the Project activities in preparation for first licensing in France, and also a wider international view via the ASN led Joint Early Review of the NUWARD SMR design, including Finnish and Czech Republic regulators, recently joined by the Swedish, Polish and Dutch regulators; • Articulates the collaborative approach to design development from involvement with the Project partners (the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Naval Group, TechnicAtome, Framatome and Tractebel) to the establishment of the International NUWARD Advisory Board (INAB), to gain greater international insight and advice; • Concludes with the focus on next steps into detailed design development, standardisation of the design and its simplification to enhance its commercial competitiveness in a context of further harmonisation of the nuclear safety and licensing requirements and aspirations.