• Title/Summary/Keyword: safety and comfort of passenger compartment

Search Result 3, Processing Time 0.015 seconds

PIV Measurements of Ventilation Flow inside a Passenger Compartment (PIV를 이용한 실차 내부 환기유동의 정량적 속도장 측정)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.24-29
    • /
    • 2011
  • The improvement of climatic comfort is crucial not only for passenger comfort but also for driving safety. Therefore, a better understanding on the flow characteristics of ventilation flow inside the passenger compartment is essential. Most of the previous studies investigated the ventilation flow using Computational Fluid Dynamics (CFD) calculations or scale-down water-model experiments. In this study, the ventilation flow inside the passenger compartment of a real commercial automobile was investigated using a Particle Image Velocimetry (PIV) velocity field measurement technique. Under real operating conditions, the velocity fields were measured at several vertical planes for several ventilation modes. The experimental data obtained from this study can be used to understand the detailed flow characteristics in the passenger compartment of a real car and to validate numerical predictions.

Experiment of A Cavity-gap Coupling Model for The Safty and Comfort of A Driving Condition

  • Kang, Sang-Wook;Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • For the purpose of controlling the coupling between the car body panels and passenger compartment, experimental investigation of an acoustic cavity with an air gap is carried out to reveal how the air gap influences the acoustic modal characteristics of the cavity. The acoustic modal characteristics of the cavity is closely related with the booming noise. The experimental results show that a very small air gap can change the acoustic modal characteristics of the cavity and, as a result, the air gap can be an important factor in controlling the booming noise for comfortable and safe passenger compartment.

Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car (제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.