• Title/Summary/Keyword: safe performance

Search Result 1,146, Processing Time 0.035 seconds

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.

Analysis of Safety and Performance Vulnerabilities Using Heat-Using Equipment(Industrial Boiler) Inspection Results (열사용기자재 검사대상기기(산업용 보일러) 검사결과를 활용한 안전 및 성능 취약점 분석)

  • Kim, Hyung-Jun;Oh, Choong-Hyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.18-26
    • /
    • 2022
  • The Korean government is conducting heat-using equipment(industrial boiler) inspection in accordance with the Energy Use Rationalization Act because of the heat-using equipment(industrial boiler)'s risks such as explosion and fire, and safe use and management. This paper aimed to setup the safe and performance vulnerabilities from database based on the inspection results for heat-using equipment(industrial boiler). This study surveyed the inspection results of 1,249 heat-using equipment(industrial boiler) which were failed inspection of heat-using equipment(industrial boiler) from january 2016 to december 2020. And the analysis method is to inform safety and performance vulnerability categories of heat-using equipment(industrial boiler) by statistically analyzing the failure reasons of boiler type and inspection type which are high variance in failure rate. The safety and performance vulnerability categories was abbreviated into 18 cases. And each catagory's main reason for failure was suggested by additional analyzing the opinions of inspectors. This paper would be the basic source and the comprehensive information dealing with the safety and performance vulnerability of heat-using equipment(industrial boiler).

An Experimental Study on Pressure-resistant Performance of a Re-fillable LPG Cylinder (LPG 재충전 소형 용기의 내압성능에 관한 실험적 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.16-20
    • /
    • 2014
  • In this paper, the performance of pressure-resistance is validated by experiment on LPG re-fillable cylinder which has increased demands for spreading of camp culture. Propane has increased suppliable requirements as fuel because of easily vaporizing effect of low boiling point. However, propane can be occurring safety problems inevitably by high vapor pressure. So, the priority is that safe cylinder should furnish in order to be circulated as safe fuel. LPG re-fillable cylinder for high pressure is tried to furnish internationally, that is restricted by safe issues. For these reasons, the pressurization and rupture are performed by using pressurizing device that is operated by hydraulic system. Also, this paper will offer rupturable characteristics comparing with vapor pressure of propane. This paper is expected as basis research for developing re-fillable cylinder and using standard for supplying them.

Multi-Residue Analysis of Fipronil and Its Metabolites in Eggs by SinChERS-Based UHPLC-MS/MS

  • Han, Keguang;Hua, Jin;Zhang, Qi;Gao, Yuanhui;Liu, Xiaolin;Cao, Jing;Huo, Nairui
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.59-70
    • /
    • 2021
  • A method for simultaneous detection of fipronil (F) and its metabolites fipronil desulfinyl (FD), fipronil sulfide (FS), fipronil sulfone (FSO) in chicken eggs was applied and validated. It includes single-step, cheap, effective, rugged, safe-based method (SinChERS) for sample preparation and ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) for chemical analysis. Results suggested that formic acid enhanced the recovery of 4 target residues and 1% supplementation to acetonitrile gained higher recoveries than that of 5%. SinChERS integrated extraction and clean-up steps into one, with shorter time (1.5 h) to operate and higher recoveries (97%-100%) than HLB, Envi-Carb-NH2 and quik-easy-cheap-effective-rugged-safe method (QuEChERS), and it consumed the smallest volume of extracting solvent (10 mL) as QuEChERS. Quantitative analyses using external standard method suggested the linear ranges of 4 target compounds were 1-20 ㎍/L with R2 >0.9947. The limit of detection (S/N>3) and quantification (S/N>10) were 0.3 ㎍/kg and 1 ㎍/kg. Recoveries ranged from 89.0% to 104.4%, and the relative standard deviations (n=6) at 1, 10, and 20 ㎍/kg were lower than 6.03%. Thirty batches of domestic eggs (500 g each) were detected by the established SinChERS-based UHPLC-MS/MS and no target residues were detected in all samples. The method developed in this study is a rapid, sensitive, accurate and economic way for multi-residue analysis of fipronil and its metabolites in eggs.

Analysis of the piled raft for three load patterns: A parametric study

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.289-302
    • /
    • 2013
  • The piled raft is a geotechnical construction, consisting of the three elements-piles, raft and the soil, that is applied for the foundation of a tall buildings in an increasing number. The piled rafts nowadays are preferred as the foundation to reduce the overall and differential settlements; and also, provides an economical foundation option for circumstances where the performance of the raft alone does not satisfy the design requirements. The finite element analysis of the piled raft foundation is presented in this paper. The numerical procedure is programmed into finite element based software SAFE in order to conduct the parametric study wherein soil modulus and raft thickness is varied for constant pile diameter. The problems of piled raft for three different load patterns as considered in the available literature (Sawant et al. 2012) are analyzed here using SAFE. The results obtained for load pattern-I using SAFE are compared with those obtained by Sawant et al. (2012). The fair agreement is observed in the results which demonstrate the accuracy of the procedure employed in the present investigation. Further, substantial reduction in maximum deflections and moments are found in piled raft as compared to that in raft. The reduction in deflections is observed with increase in raft thickness and soil modulus. The decrease in maximum moments with increase in soil modulus is seen in raft whereas increase in maximum moments is seen in piled raft. The raft thickness and soil modulus affects the response of the type of the foundation considered in the present investigation.

Retrieval methodology for similar NPP LCO cases based on domain specific NLP

  • No Kyu Seong ;Jae Hee Lee ;Jong Beom Lee;Poong Hyun Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.421-431
    • /
    • 2023
  • Nuclear power plants (NPPs) have technical specifications (Tech Specs) to ensure that the equipment and key operating parameters necessary for the safe operation of the power plant are maintained within limiting conditions for operation (LCO) determined by a safety analysis. The LCO of Tech Specs that identify the lowest functional capability of equipment required for safe operation for a facility must be complied for the safe operation of NPP. There have been previous studies to aid in compliance with LCO relevant to rule-based expert systems; however, there is an obvious limit to expert systems for implementing the rules for many situations related to LCO. Therefore, in this study, we present a retrieval methodology for similar LCO cases in determining whether LCO is met or not met. To reflect the natural language processing of NPP features, a domain dictionary was built, and the optimal term frequency-inverse document frequency variant was selected. The retrieval performance was improved by adding a Boolean retrieval model based on terms related to the LCO in addition to the vector space model. The developed domain dictionary and retrieval methodology are expected to be exceedingly useful in determining whether LCO is met.

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

Development of Performance Demonstration Programs for Eddy Current Data Analysis

  • Cho, Chan-Hee;Nam, Min-Woo;Yang, Seung-Han;Yang, Dong-Soon;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.228-232
    • /
    • 2005
  • The Korea Electric Power Research Institute (KEPRI) has developed performance demonstration programs for non-destructive testing personnel who analyze ECT(eddy current testing) data for steam generator tubing since 2001 The purpose of these performance demonstration programs is to ensure a uniform knowledge and skill level of data analysts and contribute to safe operation of nuclear power plants. Many changes have occurred in non-destructive testing of steam generator tubing such as inspection scope, plugging criteria and qualification requirements. According to the Notice 2004-13 revised by the Ministry of Science and Technology (MOST), the analyst for steam generator tubing shall be qualified as the qualified data analyst (QDA), and the site specific performance demonstration (SSPD) program shall be implemented. KEPRI developed these performance demonstration programs and they are being successfully implemented. The analyst's performance is expected to be improved by the implementation of these programs.

A Virtual Laboratory to Practice Mobile Wireless Sensor Networks: A Case Study on Energy Efficient and Safe Weighted Clustering Algorithm

  • Dahane, Amine;Berrached, Nasr-Eddine;Loukil, Abdelhamid
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.205-228
    • /
    • 2015
  • In this paper, we present a virtual laboratory platform (VLP) baptized Mercury allowing students to make practical work (PW) on different aspects of mobile wireless sensor networks (WSNs). Our choice of WSNs is motivated mainly by the use of real experiments needed in most courses about WSNs. These experiments require an expensive investment and a lot of nodes in the classroom. To illustrate our study, we propose a course related to energy efficient and safe weighted clustering algorithm. This algorithm which is coupled with suitable routing protocols, aims to maintain stable clustering structure, to prevent most routing attacks on sensor networks, to guaranty energy saving in order to extend the lifespan of the network. It also offers a better performance in terms of the number of re-affiliations. The platform presented here aims at showing the feasibility, the flexibility and the reduced cost of such a realization. We demonstrate the performance of the proposed algorithms that contribute to the familiarization of the learners in the field of WSNs.

IDENTITY-BASED AAA AUTHENTICATION PROTOCOL

  • Kim Dong-myung;Cho Young-bok;Lee Dong-heui;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.678-682
    • /
    • 2005
  • IETF suggested AAA for safe and reliable user authentication on various network and protocol caused by development in internet and increase in users. Diameter standard authentication system does not provide mutual authentication and non-repudiation. AAA authentication system using public key was suggested to supplement such Diameter authentication but application in mobile service control nodes is difficult due to overhead of communication and arithmetic. ID based AAA authentication system was suggested to overcome such weak point but it still has the weak point against collusion attack or forgery attack. In this thesis, new ID based AAA authentication system is suggested which is safe against collusion attack and forgery attack and reduces arithmetic quantity of mobile nodes with insufficient arithmetic and power performance. In this thesis, cryptological safety and arithmetical efficiency is tested to test the suggested system through comparison and assessment of current systems. Suggested system uses two random numbers to provide stability at authentication of mobile nodes. Also, in terms of power, it provides the advantage of seamless service by reducing authentication executing time by the performance of server through improving efficiency with reduced arithmetic at nodes.

  • PDF