• Title/Summary/Keyword: safe and high quality drinking water

Search Result 17, Processing Time 0.025 seconds

Management Plan for the Production of Safe and High Quality Drinking Water From the Paldang Lake (고 품질 수돗물 생산을 위한 팔당 수질관리 방안)

  • Cho, Deok-Hee;Kim, Jong-Soo;Lee, Woo-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.665-672
    • /
    • 2008
  • It is necessary to implement the management plan for the production of safe and high quality drinking water from lake Paldang. To set up the plan, the water quality items such as BOD, T-P, SS and coliform were monitored for ten years, 1997~2006, and the influence of raw water quality on the drinking water treatment process and the treated water quality was also evaluated from 2004 to 2006. In conclusion, water quality items such as turbidity(SS), T-P(eutrophication), pathogens(fecal coliforms, enterovirus, reovirus, giardia, cryptosporidium), DOC(precursor of disinfection by-products), and micro-pollutants(phthalates, VOCs, heavy metals) are should be managed to get safe and high quality drinking water from lake Paldang.

Assessment of drinking water quality and its health impact on local community in coastal belt Karachi

  • Samo, Saleem Raza;Channa, Raja Siraj Ahmed;Mukwana, Kishan Chand
    • Advances in environmental research
    • /
    • v.6 no.3
    • /
    • pp.203-216
    • /
    • 2017
  • For survival of human beings clean water is an essential commodity whereas contamination in drinking water threatens to mankind. The main cause of water contamination is social and development activities of human being along with increasing population. The community in the study area has acute shortage of drinking water along with about 40 to 60% has no access to safe drinking water. This study indicates drinking water quality of two major sources of coastal belt of Karachi one is supplied by Karachi Water & Sewerage Board (KWSB) as tap water and the other through groundwater. The physicochemical analysis was carried out by following the standard methods for checking the quality of drinking water. The analyzed results showed that the quality of groundwater was unfit as potable water. The most critical situation was observed as high level of contamination followed by high turbidity and increased salinity levels. TDS in surface water were found 12% above and TDS in groundwater was 20% below the National Drinking Water Quality Standards (NDWQS) of Pakistan as well as the permissible WHO drinking water quality guidelines.

A Sustainability Assessment of the Rainwater Harvesting System for Drinking Water Supply: A Case Study of Cukhe Village, Hanoi, Vietnam

  • Nguyen, Duc Canh;Dao, Anh Dung;Kim, Tschung-Il;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • In Cukhe, a village located in the outskirts of Hanoi, Vietnam, people suffer from a shortage of high-quality water due to an arsenic contaminated supply water resource. We installed catchments, filters and settled tanks in the existing rainwater harvesting facility to improve water quality, and ten portable rainwater tanks to provide good-quality drinking water to the poor households and kindergartens in the dry season. The triple bottom line considerations, as well as the environmental, economic, and social impacts of the rainwater harvesting (RWH) systems are examined. RWH is a sustainable method to obtain good-quality drinking water at low cost and with little energy expenditure. Education of the system also encourages that continuation of the system and expansion can lead into economic prosperity, as the safe drinking water can be sold to the community. Hence, RWH is a unique proposal as sustainable drinking supply water for improving the lives and health of residents in Cukhe and other sites where water supply sources are contaminated.

Current Issues and Challenges Related to Water Quality of Nepal in Comparison with Korean Situation (한국의 상황과 비교한 네팔의 수질 관련 현재의 문제 및 향후 과제)

  • Bhandari, Pratibha;Kim, Dong S.
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Although Nepal is naturally bestowed with ample water resources, not all of the population has access to safe and clean drinking water. Waste water treatment is almost nonexistent. In the recent days the flow of population in the urban areas has increased the existing challenges of providing safe water and promoting sanitation. The prevalence of water borne diseases is high. This paper presents overview of issues like water pollution, arsenic contamination of drinking water, waste water treatment and effects of water contamination on public health. Comparison between waste water treatment regulations in South Korea and Nepal has also been made. Implementation strategies to tackle the existing water related problem for promoting public health is also recommended.

Chlorine Residual Prediction in Drinking Water Distribution System Using EPANET (EPANET을 이용한 상수도 관망의 잔류염소 거동 예측)

  • 유희종;김주원;정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In this study, chlorine dose at water storage tank was predicted to meet the recommended guideline for free chlorine residual in drinking water distribution system, using EPANET which is a computer program that performs extended Period simulation of hydraulic and water quality behavior within pressurized pipe networks. The results may be summarized as follows. The decay of chlorine residual by season varied considerably in the following order; in summer ($25^{\circ}C$) > spring and fall (15$^{\circ}C$) > winter (5$^{\circ}C$). For re-chlorination at water storage tank by season, season-varying chlorine dose was required at its maximum of 1.00 mg/l in summer and minimum of 0.40 mg/l in winter as free chlorine residual. The decay of chlorine residual through out the networks increased with water age spent by a parcel of water in the network except for some points with low water demand. In conclusion, the season-varying chlorine dose as well as the monitoring of water quality parameters at the some points which showed high decay of chlorine residual may be necessary to deliver the safe drinking water.

Prediction of high turbidity in rivers using LSTM algorithm (LSTM 모형을 이용한 하천 고탁수 발생 예측 연구)

  • Park, Jungsu;Lee, Hyunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.

Evaluation of Radioactive Substance and Measurement of Harmfulness in Drinking Water (먹는 샘물의 방사성물질 측정 및 유해성 평가)

  • Jo, Jungwon;Lee, Sangbok;Nam, Johyeon;Noh, Eunjeong;Beak, Hyunwoo;Lee, Yejin;Lee, Joonse;Choi, Jiwon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.247-252
    • /
    • 2021
  • As the number of single-person households increases, the consumption of bottled water is increasing. In addition, as the public's interest in radioactivity increases, interest in the field of living radioactivity is also increasing. Since drinking water is an essential element in our daily life, it must be safe from radioactivity. In this study, gamma radiation of drinking spring water was measured and internal exposure dose evaluation was performed to determine its harmfulness. K-40 and uranium-based radioactivity analysis was performed through a high-purity germanium detector, and as a result, drinking water was detected somewhat higher than that of mixing water. Since there is no regulation on the natural radioactivity concentration in Korea, it was compared with the U.S. Environmental Protection Agency Drinking Water Regulations and World Health Organization standard. As a result, there were some items that exceeded standards. Internal exposure was evaluated according to the effective dose formula of ICRP 119. As the result was derived that a maximum of 1.17 mSv per year could be received. This result means that the dose limit for the general public may be exceeded, and it was judged that it is necessary to set an appropriate standard value and present a recommendation value through continuous monitoring in the future.

Drinking Water Treatment of Surface Water Using Microfiltration-Nanofiltration Processes (정밀여과 및 나노여과 공정을 이용한 지표수의 상수처리)

  • Lee, Sung-Woo;Kim, Chung-Han;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.224-230
    • /
    • 2000
  • Membrane processes are capable of removing much materials from water. The removal or rejection characteristics of a membrane is usually depend upon the nominal pore size or MWCO(molecular weight cut off). A membrane with a smaller nominal pore size or MWCO should be capable of removing smaller contaminants from water. A series of experiments was performed to investigate the separation characteristics of membrane processes which consisted of microfiltration(MF) and nanofiltration(NF). To evaluate removal efficiencies of some pollutants such as the consumption of $KMnO_4$, THMFP, NH3-N, Fe, Mn, and pesticides, source water sampled from the Kum river was treated by the those membrane processes. Also, the results of experiments were compared with those of conventional water treatment processes. By two types of the membrane process, total removal efficiency of $KMnO_4$ consumed, THMEP, and $NH_3-N$ were 91.0%, 84.3%, and 85.5%, respectively and those processes were efficient in pesticides removal as well. Most of the effluents satisfied the Korean standard of drinking water quality continuously in the experimental periods. However, NF was needed for producing the safe drinking water in case of treating the raw water contaminated with Mn since removal efficiency of MF was not high enough. On the basis of the experimental results, it was suggested that NF could be applied to remove not only $NH_3-N$ but THMFP even without pre-chlorination.

  • PDF

The Effect on HRT and Hydraulic Characteristics of Biological Activated Carbon Fluidized Bed. (생물활성탄 유동상의 수리학적 특성과 체류시간의 영향)

  • 우달식;김선일;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.103-109
    • /
    • 1997
  • As the quality of raw water deteriorates, a number of additional treatment techniques have been developed and adapted to water treatment for producing a safe and aesthetically satisfactory drinking water. So, BACFB process as pretreatment in water supply is to be effective to remove dissolved organics. This study performed to find out the effects of HRT and hydraulic characteristics on BACFB reactors in water supply. The flow type in reactor was a high dispersion with complete mixing. As superficial velocity was increased, bed expansion was closed to theoretical values. It was considered that below 30 min HRT could operated to ensure the removal of dissolved organics.

  • PDF

A Study on the Stable Operation of High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 안정적 운영에 관한 연구)

  • Cho, Haejin;Na, Chanwook;Ko, Sungho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • Sodium hypochlorite, used as water disinfectant, is generated by electrolysis of salt. Compared to chlorine gas disinfection, it is free from high-pressure gas regulation and does not generate toxic gas, so it is increasingly used as a safe disinfectant. Despite these advantages, the concentration of sodium hypochlorite decreases with temperature during long-term storage, and the amount of chlorate increases when a large amount is added, it has mainly been applied to small-scale waterworks. To solve this problem, high sodium hypochlorite generation was developed. In this study, the changes of concentration and chlorate of sodium hypochlorite with time has been studied. As a result of the test, it was found that the usable period of sodium hypochlorite produced at a certain temperature or less was increased from 1.5 days to 13 days. Overall, sodium hypochlorite can be applied even in large-scale waterworks, which makes operation more stable and also reduces the disinfection byproducts, thus it contributed greatly to securing water quality.