• Title/Summary/Keyword: sPMU

Search Result 35, Processing Time 0.024 seconds

Optimal Placement of Synchronized Phasor Measurement Units for the Robust Calculation of Power System State Vectors (견실한 전력계통 상태벡터 계산을 위한 동기 페이저 측정기 최적배치)

  • Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.75-79
    • /
    • 2000
  • This paper proposes the optimal placement with minimum set of Phasor Measurement Units (PMU's) using tabu search and makes an alternative plan to secure the robustness of the network with PMU's. The optimal PMU Placement (OPP) problem is generally expressed as a combinatorial optimization problem subjected to the observability constraints. Thus, it is necessary to make a use of an efficient method in solving the OPP problem. In this paper, a tabu search based approach to solve efficiently this OPP problem proposed. The observability of the network with PMU's is fragile at any single PMU contingency. To overcome the fragility, an alternative scheme that makes efficient use of the existing measurement system in power system state estimation proposed. The performance of the proposed approach and the alternative scheme is evaluated with IEEE sample systems.

  • PDF

대공유도무기 패트리어트(2)

  • Kim, Dong-Yun
    • Defense and Technology
    • /
    • no.7 s.221
    • /
    • pp.44-51
    • /
    • 1997
  • 지난호에 S-300V를 소개하면서 S-300 PMU-1 사진을 게재하여 이를 바로 잡습니다. S-300V는 이동형 대탄도탄 유도무기체계로 개발되었고 S-300 PMU-1은 원래 대항공기 방어를 주임무로 하는 드립니다. S-300 PMU 체계의 최신 개량형으로 서로 상이한 무기체계임을 알려드립니다. 아울러 패트리어트와 S-300V의 기사를 나누어 게재했으면 하는 의견이있어 이번호에는 패트리어트를 소개하고 8월호에 S-300V를 게재코자 합니다.

  • PDF

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF

Study on Production of Power Monitoring Unit for Electric Propulsion UAV (전기동력 무인항공기용 PMU의 개선 및 제작에 대한 연구)

  • Kang, Jin-Myeong;Jeong, Jin-Seok;Kang, Beom-Soo;Kim, Jang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • This paper describes the design and implementation of previously developed PMU (Power Monitoring Unit) for LiPB (Lithium-ion Polymer Battery) that is electric propulsion used as unmanned aerial vehicle's power source. Improved PMU provides stable voltage and current to various sensors and elctric motors necessary during flight. Voltage and current monitoring function that is measured by improved PMU more precisely be enhanced and the monitoring channel and temperature sensor is added. To verify the improved performance of the equipment, it is integrated to electric propulsion system of unmanned aerial vehicle. PMU is calibrated through the ground test. And PMU's performance is checked through the flight test.

Complete and Incomplete Observability Analysis by Optimal PMU Placement Techniques of a Network

  • Krishna, K. Bala;Rosalina, K. Mercy;Ramaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1814-1820
    • /
    • 2018
  • State estimation of power systems has become vital in recent days of power operation and control. SCADA and EMS are intended for the state estimation and to communicate and monitor the systems which are operated at specified time. Although various methods are used we can achieve the better results by using PMU technique. On placing the PMU, operating time is reduced and making the performance reliable. In this paper, PMU placement is done in two ways. Those are 'optimal technique with pruning operation' and 'depth of unobservability' considering incomplete and complete observability of a network. By Depth of Unobservability Number of PMUs are reduced to attain Observability of the network. Proposed methods are tested on IEEE 14, 30, 57, SR-system and Sub systems (1, 2) with bus size of 270 and 444 buses. Along with achieving complete observability analysis, single PMU loss condition is also achieved.

Parallel Processing Techniques to Determine State Vectors of a Power System using PMU (동기페이저측정기를 활용한 전력계통 상태벡터 결정을 위한 병렬처리기법)

  • Lee, Ki-Song;Lee, Chan-Ju;Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.72-74
    • /
    • 2000
  • This paper presents the linear model of the measurement system with Phasor Measurement Units (PMU's) and the parallel processing technique to determinate state vectors of a power system. The conventional model of the PMU measurement system is in a dilemma that it is not applicable to optimal PMU placements and it needs more PMU to apply this model. In order to improve this defect, in this paper, the extended linear model which adaptable to optimal PMU placements considering the feature of zero injection bus is proposed. Because the proposed model is expressed as over-determined measurement equation, the efficient algorithm is needed. This paper proposed the partitioning scheme and the process algorithm for parallel determinating state vectors of a power system efficiently. The performance of the proposed linear model and the parallel processing algorithm is evaluated with IEEE sample systems.

  • PDF

A Study on State Analysis of Substation Using PMU (PMU를 이용한 변전소 상태 해석에 관한 연구)

  • Tae-Hee Kim;Kyung-Min Lee;Cheol-Won Park;Dong-Hoon Jeon;Dae-Yoon Kwon;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.304-308
    • /
    • 2024
  • In this paper, in order to analyze the PMU data of the accident section, we collected the raw data of a total of 35 PMU installed at the Yeonggwang substation and tried to find a way to analyze the data, and analyzed the data using Excel format and formula. As a result, the three-phase voltage and current data of the PMU were calculated using formulas in Excel and interpreted as effective and reactive power, and it was possible to check the effective and reactive power of the accident section through the graph to see why it was different from before the accident. As a result, it was confirmed that each power was greatly reduced in the graph of the effective and reactive power of the accident section, and it was confirmed that the loss occurred as the power of the accident section was greatly reduced.

A Power Management Unit for Solar Energy Harvesting (빛 에너지 하베스팅을 위한 전력관리회로)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.267-271
    • /
    • 2012
  • In this paper a power management unit for solar energy harvesting is proposed. If solar energy is sufficient, Power Management Unit(PMU) directly supplies load with solar energy. By contrast, if solar energy is insufficient to operate sensor nodes, voltage booster(VB) boosts the solar cell's output voltage, and then PMU supplies load with the harvested energy. The designed circuit had been fabricated using a 018um CMOS process. In the first case, the PMU supplies load with more energy than in the second case. In the second case where a VB is used, the PMU operates to supply load with solar energy even when illumination is low and minimum solar cells with very low output voltage are used.

  • PDF

Meter Optimal Placement in Measurement System with Phasor Measurement Unit (페이저 측정 시스템의 측정기 최적배치)

  • Kim, Jae-Hoon;Cho, Ki-Seon;Kim, Hoi-Cheol;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1195-1198
    • /
    • 1999
  • This paper presents optimal placement of minimal set of phasor measurement units(PMU's) and observability of measurement system with PMU. By using the incidence matrix symbolic method which directly assigns measurement and pseudo-measurement to incidence matrix, it is much simpler and easier to analyze observability. The optimal PMU set is found through the simulated-annealing(SA) and the direct combinational method. The cooling schedule parameter which is suitable to the property of problem to solve is specified and optimal placement is proven by presented direct combinational method. Search spaces are limited within reasonable feasible solution region to reduce a unnecessary one in the SA implementation based on global search. The proposed method presents to save CPU time and estimate state vectors based on optimal PMU set.

  • PDF

Payload Management Unit design of MSC (Multi-Spectral Camera)

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Uk;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1108-1110
    • /
    • 2003
  • MSC(Multi-Spectral Camera) which is a unique payload for KOMPSAT-2, comprises main three subsystems of PMU(Paylaod Management Unit), EOS(Electro -Optical Subsystem) and PDTS(Payload Data Transmission Subsystem). The PMU, as a main controller of MSC, performs major tasks such as interfacing with S/C(Space Craft), controlling the MSC operation, distributing and controlling of operating power to all MSC including thermal unit, etc. In this paper the H/W configurations as well as the functions of PMU are introduced and possible changes for the future development are suggested.

  • PDF