• Title/Summary/Keyword: sFlow

Search Result 13,313, Processing Time 0.043 seconds

A Study on the Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump by PTV (PTV 계측법에 의한 극저비속도 원심펌프의 내부유동특성에 관한 연구)

  • Choi, Young-Do;Matsui, Jun;Kurokawa, Junichi;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.9-18
    • /
    • 2006
  • In the range of very low specific speed ($n_s<0.25$, non-dimensional), the performance of a centrifugal pump is much different from that of a centrifugal pump of normal ns and the efficiency of the pump drops rapidly with the decrease of $n_s$. In order to examine the reason of unstable performance characteristics of the very low $n_s$- centrifugal pump, the internal flow of the pump with a semi-open impeller is measured by a PTV(Particle Tracking Velocimetry) system. The purpose of this study is to make clear the internal flow characteristics and to obtain basic knowledge of the pump performance. The results show that the leakage flow through tip clearance give a strong effect on the flow pattern of impeller passage. A large vortex in the impeller passage and a strong reverse flow at impeller outlet are formed in the range of small flow rates, and the vortex and the reverse flow together reduce the absolute tangential velocity at the impeller outlet and cause the performance instability.

Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings (유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향)

  • Choi, M. H.;Jin, H. T.;Joun, M. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

Optical Flow Estimation of Large Displacements from Real Sequential Images

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 2011
  • In computing the optical flow. Horn and Schunck's method which is a representative algorithm is based on differentiation. But it is difficult to estimate the velocity for a large displacement by this algorithm. To cope with this problem multigrid method has been proposed. In this paper, we have proposed a scaled multigrid algorithm which the initial flow for a level is calculated by the summation of the optimally scaled flow and error flow. The optimally scaled flow is the scaled expanded flow of the previous level, which can generate an estimated second image having the least RMS error with respect to the original second image, and the error flow is the flow between the estimated second image (generated by the optimally scaled flow) and the original second image. The flow for this level is then estimated using the original first and second images and the initial flow for that level. From among the various coarsest starting levels of the multigrid algorithm, we select the one that finally gives the best estimated flow. Better results were achieved using our proposed method compared with Horn and Schunck's method and a conventional multigrid algorithm.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

EXAMPLES OF REDUCED ORDER MODELLING FOR A 3D BACKWARD FACING STEP FLOW USING POD TECHNIQUE (POD를 사용한 3차원 후향계단 유동장 분석 예제)

  • Lee, K.S.;Lee, E.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.40-42
    • /
    • 2010
  • Unsteady CFD results of the backward facing step (BFS) flow field is reconstructed by the low-dimenstional modes using the POD (Proper Orthogonal Decomposition) technique. Flow responses to the blowing or suction with various frequencies and amplitudes applied at the edge of the BFS can also be analysed using the same technique. The present technique can be effectively applied to the feedback flow control device.

  • PDF

Flow response and habitat region of aquatic plants in urban streams (도심하천 수생식물의 흐름에 대한 대응 분석 및 식재영역 결정)

  • Kim, Seonghwan;Cho, Gyewoon;Kim, Jin-Hong
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • This study presents the flow response and habitat region of the aquatic plants in the urban streams. Phragmites japonica, Phragmites communis, Miscanthus sacchariflorus, Persicaria blumei and Persicaria thunbergii were selected as for typical plants. Flow response and habitat region were determined by flow velocity/depth and vegetation growth. Stages for flow response of the aquatic plants were classified into stable, recovered, damaged and swept away. Criteria between the recovered and damaged stage was determined by the bending angle of $30{\sim}50^{\circ}$. Capability against flow was high in the order of Phragmites japonica, Phragmites communis, Miscanthus sacchariflorus, Persicaria blumei and Persicaria thunbergi. Phragmites japonica and Phragmites communis were capable of coping with flow depth 0.9 m, flow velocity 1.5 m/s and with flow depth 1.0 m, flow velocity 0.9 m/s, respectively. Miscanthus sacchariflorus was capable within the region of flow depth 1.0 m and flow velocity 0.6 m/s. Persicaria blumei and Persicaria thunbergii were less capable than the other aquatic plants and were vulnerable exceeding the water depth of 1.0 m. Habitat regions by the flow response of each plants were suggested.

An Experimental Study on Flow Characteristics of R134a in a Small Diameter Tube (세관내 R-134a의 유동특성에 관한 실험적 연구)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1307-1312
    • /
    • 2007
  • The flow characteristics of R-134a in a small diameter tube was investigated experimentally. An experimental apparatus was consisted of a magnetic gear pump, an evaporator, a sight-glass, a condenser and a measurement instruments. The sight-glass for flow pattern observations was located at the inlet and outlet of the evaporator. The experiment was carried out to show the flow characteristics of R-134a in a small diameter tube. Mass flux of refrigerants was ranged from 100 to 1000 $kg/m^2s$, the saturation temperature was $30^{\circ}C$. In the flow patterns during evaporation, the annular flow in a 2 mm inner diameter tube occurred at a relatively lower quality and mass velocity, compared to that in a 8 mm inner diameter tube. The evaporation flow pattern in a small diameter tube has been shown major deviations with the Baker, Mandhane and Taitel-Dutler's flow pattern maps but it was similar to the Dobson's flow pattern map.

  • PDF

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

Numerical analysis of flow and settling efficiency in a sedimentation basin (수치모의를 통한 침사지에서의 흐름 및 침사효율 해석)

  • Kim, Dae-Guen;Kim, Sung-Man;Park, Won-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.713-722
    • /
    • 2010
  • This paper has assessed the flow patterns and settling efficiency in the sedimentation basin using the particle tracking method of the CFD code and has reached the following conclusions: In the original design where no baffle is installed in the sedimentation basin, a large recirculating area where the flow stagnates is created in the right side of the sedimentation basin, with most of the particles moving to the left side of the sedimentation basin following the flow. This biased flow structure in the sedimentation basin reduces the residence time of particles and thereby undermines settling efficiency. The biased flow toward the left side of the sedimentation basin is alleviated by installing a baffle in the sedimentation basin, promptly reducing the fast flow of over 0.7 m/s in the inlet of the sedimentation basin to the rate below 0.2 m/s. In this paper's simulation conditions, if a one-sided baffle is to be installed in the sedimentation basin, placing it 15 meters away from the basin's inlet leads to the best settling efficiency; it has also been analyzed that installing a two-sided baffle-rather than a one-sided one-is a better option in terms of settling efficiency. The highest settling efficiency of 96.2% is achieved when the underwater length of the two-sided baffle is set at 8 meters.

A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics (과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구)

  • Kim, Bo-Yeon;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Seong;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.37-40
    • /
    • 2009
  • This study was performed to design of $H_2O_2$/Kerosene catalyst ignition injector and cold flow test to measure the mass flow rate and spray angle. Mass flow rate and spray angle were measured by designed injector through cold flow test. Result of test kerosene mass flow rate was measured 12.88 g/s and 40 deg of spray angle at pressure drop 3 bar as same as design point. And hydrogen peroxide was measured 94.39 g/s at pressure drop 1 bar smaller than design point.

  • PDF