• Title/Summary/Keyword: sFEM

Search Result 1,727, Processing Time 0.026 seconds

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.

A Numerical Analysis on Flow and Strength of Ball Valve for petrochemistry (석유화학용 Ball Valve 유동 및 강도 수치해석)

  • Yi, Chung-Seub;Jeong, Hwi-Won;Jang, Sung-Cheol;Nam, Tae-Hee;Park, Jung-Ho;Yun, So-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.357-362
    • /
    • 2008
  • This study have goal with reverse engineering for petrochemistry of high pressure ball valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the petrochemistry high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the water($H_2O$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated inlet velocity 5m/s. CFD solver used STAR-CCM+ which is commercial code. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

A Study on the Process of Tube Spinning for the Titanium Alloy (티타늄 합금재의 튜브 스피닝 공정해석)

  • 홍대훈;황두순;이병섭;홍성인
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.55-63
    • /
    • 2000
  • Studies for tube spin forming have been implemented restrictively compared to spinning process, because of the complex of deformation mechanism. Especially there were not many studies by using FEM(Finite Element Method) for overcoming restriction of upper bound method. In this paper, the tube spinning process is analyzed to produce cylindrical body made by titanium alloy. In analysis, processing parameters was obtained by using upper bound method to consider material properties of titanium alloy and finite element analysis was implemented to investigate the flatness and the elongation of the titanium alloy workpiece by using ABAQUS code. The independent variables are ; material properties of workpiece, angles of roller, reduction of diameter. Three variables, two angles of roller and reduction of diameter are optimized by using the upper bound method. In this method, we can estimate the workable power, working force and reduction of diameter, and also the flatness and the elongation of workpiece by the finite elements analysis using ABAQUS/standard. The results indicates that these variables play a critical factors of spinning process for the titanium alloy and the optimum values of these variables.

  • PDF

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.

ELF 3D Magnetic Field and Eddy Current Calculation of Human Body Around Transmission Lines (송전선로 주변의 3차원 자기장 및 인체 유도 와전류 계산)

  • Myeong, Seong-Ho;Lee, Dong-Il;Sin, Gu-Yong;Han, In-Su;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.485-491
    • /
    • 2002
  • Since Wertheimer and Leeper reported possible adverse health effects of magnetic field in 1979, worldwide researches on this issue have been conducted. More recently, the U.S. Congress instructed the NIEHS (National Institute of Environmental Health Sciences), NIH (National Institute of Health) and DOE (Department of Energy) to direct and manage EMF RAPID (Electric and Magnetic Fields Research and Public Information Dissemination) program aimed at providing scientific evidence to clarify the potential for health risks from exposure to extremely low frequency electric and magnetic fields(ELF-EMF). Although they concluded that the scientific evidence suggesting adverse health risks of ELF-EMF is weak, the exposure to ELF-EMF cannot be recognized as entirely safe. Therefore, the purpose of this article is to describe magnetic field 3-D calculation and to evluate eddy current of human body compare to international guide line recognized one of the basic problems. In open boundary problem, Magnetic field using FEM is not advantageous in the point of the division of area and the proposition of the fictitious boundary. Therefore, we induced the analytic equation of magnetic field calculations so but the finite line segment based on Biot-Savarts law Also, Eddy currents induced due to ELF-EMF magnetic field are computed. To calculate induced currents, impedance method is used in this paper, An example model of human head with resolution of 1.27cm is used. In this paper, We evaluate the magnetic field and eddy current of human head around 765 kV transmission lines compare to international guide line.

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

End-fitting Design and Performance Evaluation of Polymer Insulator (폴리머 애자의 End-fitting 설계 및 성능 평가기술)

  • Cho, H.G.;Lee, U.Y.;Han, S.W.;Han, D.H.;Ji, W.Y.;Yeo, H.G.;Kang, D.W.;Chun, J.U.;Lee, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.25-29
    • /
    • 2004
  • Corona on polymer materials causes deterioration by the combined action of the discharge striking the surface and the action of certain chemical compounds that are formed by the discharges. In the design and manufacture of polymer insulators must be sufficiently large to avoid corona discharges, otherwise a shielding or corona ring (grading ring) needs to be installed on the insulator. To conduct this purpose, many researchers have investigated end-fitting of polymer insulator by voltage distribution simulation and electrical test. Grading rings are used to improve the performance of the insulator in multiple ways. They can reduce corona and associated audible noise and radio influence and television interference. The factors determining the uses of a grading ring are line voltage, geometry and dimensions of end fittings, geometry and dimensions of line hardware, and environmental conditions. In this paper, electrical property of polymer insulator with end-fitting design have been investigated by electrical field analysis, various end-fitting design, tracking wheel test, corona inception voltage and extinction voltage. Electrical field analysis is conducted by FEM program and various end-fitting is designed through this result. Designed end-fittings are manufactured and their performance is conducted by electrical performance test.

  • PDF

Integrity Evaluation for 3D Cracked Structures(II) (3차원 균열을 갖는 구조물에 대한 건전성 평가(II))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Three Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for surface cracks existing in structures. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Nodes are generated by bucket method, and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in cylindrical structures subjected to pressure is calculated. Analysis results by present system showed good agreement with those by ASME equation and Raju-Newman's equation.

Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet (단층 그래핀시트의 모드 II 및 혼합모드 파괴)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • The mode II fracture behavior of a single-layer graphene sheet (SLGS) containing a center crack was characterized with the results of an atomistic simulation and an analytical model. The fracture of zigzag graphene models was analyzed with molecular dynamics and the mode II fracture toughness was found to be $2.04MPa{\sqrt{m}}$. The in-plane shear fracture of a cellular material was analyzed theoretically for deriving the $K_{IIc}$ of SLGS, and FEM results were obtained. Mixed-mode fracture of SLGS was studied for various mode I and mode II ratios. The mixed-mode fracture criterion was determined, and the obtained fracture envelope was in good agreement with that of another study.