• Title/Summary/Keyword: s-wave velocity

Search Result 856, Processing Time 0.031 seconds

Crustal Structure Beneath Korea Seismic Stations (Inchon, Wonju and Pohang) Using Receiver function (수신함수에 의한 한국 지진관측소(인천, 원주 포항) 하부의 지각구조 연구)

  • Kim, So-Gu;Lee, Seung-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.43-54
    • /
    • 2004
  • The broadband receiver functions are developed from teleseismic P waveforms recorded at Wonju(KSRS), Inchon(IRIS), and Pohang(PHN), and are analyzed to examine the crustal structure beneath these stations. The teleseismic receiver functions are inverted in the time domain of the vertical P wave velocity structures beneath the stations. Clear P-to-S converted phases from the Moho interface are observed in teleseismic seismograms recorded at these stations. The crustal velocity structures beneath the stations are estimated by using the receiver function inversion method(Ammon et al., 1990). The general features of inversion results are as follows: (1) For the Inchon station, the Conrad discontinuity exists at 17.5 Km(SW) deep and the Moho discontinuity exists at 29.5 Km(NW) and 30.5 Km(SE, SW) deep. (2) The shallow crustal structure beneath Wonju station may be covered with a sedimentary rock of a 3 Km thickness. The average Moho depth is assumed about 33.0 Km, and the Conrad discontinuity may exist at 17.0 Km(NE) and 21.0 Km(NW) deep. (3) For Pohang station, the thickness of shallow sedimentary layer is a 3.0 Km in the direction of NE and NW. The Moho depth is 28.0 Km in the direction of the NE and NW. The Conrad discontinuity can be estimated to be existed at 21.0 Km deep for the NE and NW directions.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

Responses of Health Physical Fitness and Arterial Stiffness through Cigarette Smoking (흡연습관이 성인 남성의 건강관련체력 및 동맥경직도에 미치는 영향)

  • Jung, Min-Kyung;Park, Eun-Kyung;Yoo, Jae-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.197-205
    • /
    • 2019
  • This study was to compare arterial stiffness and hemodynamic responses between male smokers and non-smokers. This study also investigates the influences of smoking before exercise on arterial stiffness and hemodynamic responses. 24 male subjects of age 20-29 without history of cardiorespiratory disease were divided into smokers and non-smokers. Smokers had more than 5 years of smoking experience. In order to evaluate the effects of pre-exercise smoking, smokers were tested twice, once with a cigarette before the exercise and the other once without one. Data was collected from bio-impedance analysis, SphygmoCor XCEL, graded exercise test, and fitness test. Main results of this study are as follows: First, there are differences between smokers and non-smokers in cardiorespiratory and hemodynamic response functions, as shown by maximal oxygen consumption, exercise duration, and heart rate. Second, the although the arterial stiffness between smokers and non-smokers showed statistically significant differences in the speed of the pulse wave velocity and augmentation index, smoker had a faster rate. It shows that smoking behavior has a negative impact on the cardiovascular system. Third, pre-exercise smoking behavior does have an impact on cardiorespiratory and hemodynamic response functions, as shown by exercise duration and heart rate. Lastly, arterial stiffness between smokers and non-smokers showed statistically not significant in the speed of the pulse wave velocity and augmentation index. However, the difference was not statistically significant. Brachial systolic pressure, a component of pulse wave analysis, on the other hand, was significantly dependent on pre-exercise smoking behavior. Subjects who participated in this study are college students in early 20s. Given their relatively short history of smoking, it is possible that their smoking habits are not severe enough to develop into cardiorespiratory or cardiovascular diseases. But Smokers showed lower levels of cardiopulmonary functions, as maximal oxygen consumption and exercise duration than nonsmokers.

Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response (지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안)

  • Sun, Chang-Guk
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.203-218
    • /
    • 2010
  • The site categorization and corresponding site amplification factors in the current Korean seismic design guideline are based on provisions for the western United States (US), although the site effects resulting in the amplification of earthquake ground motions are directly dependent on the regional and local site characteristic conditions. In these seismic codes, two amplification factors called site coefficients, $F_a$ and $F_v$, for the short-period band and midperiod band, respectively, are listed according to a criterion, mean shear wave velocity ($V_S$) to a depth of 30 m, into five classes composed of A to E. To suggest a site classification system reflecting Korean site conditions, in this study, systematic site characterization was carried out at four regional areas, Gyeongju, Hongsung, Haemi and Sacheon, to obtain the $V_S$ profiles from surface to bedrock in field and the non-linear soil properties in laboratory. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined, and thus the site period in Korea was distributed in the low and narrow band comparing with those in western US. Based on the geotechnical characteristic properties obtained in the field and laboratory, various site-specific seismic response analyses were conducted for total 75 sites by adopting both equivalent-linear and non-linear methods. The analysis results showed that the site coefficients specified in the current Korean provision underestimate the ground motion in the short-period range and overestimate in the mid-period range. These differences can be explained by the differences in the local site characteristics including the depth to bedrock between Korea and western US. Based on the analysis results in this study and the prior research results for the Korean peninsula, new site classification system was developed by introducing the site period as representative criterion and the mean $V_S$ to a depth of shallower than 30 m as additional criterion, to reliably determine the ground motions and the corresponding design spectra taking into account the regional site characteristics in Korea.

Characteristics of Engineered Soils (Engineered Soils의 특성)

  • Lee, Jong-Sub;Lee, Chang-Ho;Lee, Woo-Jin;Santamarina, J. Caries
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.129-136
    • /
    • 2006
  • Engineered mixtures, which consist of rigid sand particles and soft fine-grained rubber particles, are tested to characterize their small and large-strain responses. Engineered soils are prepared with different volumetric sand fraction, sf, to identify the transition from a rigid to a soft granular skeleton using wave propagation, $K_{o}-loading$, and triaxial testing. Deformation moduli at small, middle and large-strain do not change linearly with the volume fraction of rigid particles; instead, deformation moduli increase dramatically when the sand fraction exceeds a threshold value between sf=0.6 to 0.8 that marks the formation of a percolating network of stiff particles. The friction angle increases with the volume fraction of rigid particles. Conversely, the axial strain at peak strength increases with the content of soft particles, and no apparent peak strength is observed in specimens when sand fraction is less than 60%. The presence of soft particles alters the formation of force chains. While soft particles are not part of high-load carrying chains, they play the important role of preventing the buckling of stiff particle chains.

Physical property evolution along gas hydrate saturation for various grain size distribution (다양한 입도분포에서의 하이드레이트 함유량에 따른 물성 변화 양상 연구)

  • Jung, Jaewoong;Lee, Jaehyung;Lee, Joo Yong;Lee, Minhui;Lee, Donggun;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.149-149
    • /
    • 2011
  • 청정 에너지원으로 높은 잠재력을 가지고 있는 가스하이드레이트는 상업적 기술개발이 미확보된 상태임에도, 우리나라에서 부존이 직접적으로 확인되었기 때문에 에너지원으로서 그 중요성이 부각되고 있다. 현재 전세계적으로 가스하이드레이트 개발 및 생산에 관한 연구가 활발히 진행되고 있으며 이에 대한 기초자료로서 가스하이드레이트가 함유된 퇴적층의 물성자료가 필요하다. 이에 따라 본 연구에서는 입도 분포별 총 5가지의 미고결 시료를 대상으로 투과도, p파속도, 전기비저항 측정을 수행하였다. 연구에 사용된 미고결 시료는 Hama#5($774{\mu}m$), #6($485{\mu}m$), #7($258{\mu}m$), #8($106{\mu}m$) 4가지와 Hama#6과 Hama#7을 1:1($371{\mu}m$)로 혼합하여 사용하였다. 실험에 사용된 장비는 가스하이드레이트를 인공적으로 생성시키기 위해 퇴적층을 모사할 수 있는 고압셀과 자료획득장비, 유체 주입장비, 온도 유지장비이다. 또한 투과도 측정에는 차압계, 전기비저항 측정에 RLC meter, p파속도 측정에 음파 송수신장비를 사용하여 각각의 물성을 측정하였다. 실험과정을 단계별로 요약하면 먼저 시료를 고압셀에 충진한 뒤 주입된 물의 양으로부터 공극률을 측정하고, 절대 투수계수를 측정하였다. 그 후, 메탄가스를 주입하여 퇴적층 내 수포화도(water saturation)를 잔류상태(irreducible saturation)로 유지시키고 메탄가스를 추가적으로 주입하여 원하는 압력까지 가압한 뒤 온도를 $1^{\circ}C$로 낮추었다. 가스하이드레이트의 생성은 급격한 압력강하로부터 알 수 있다. 최종적으로 가스하이트레이트가 함유된 퇴적층의 상대 투수계수를 측정하기 위해 메탄가스를 주입하였고 각각의 측정장비를 통해 전기비저항 및 p파 속도를 측정하였다.$V_g$, $V_h$, $V_w$, $V_ss$는 각각 가스의 부피, 하이드레이트의 부피, 물의 부피, 모래의 부피이다. 또한 수포화도, $S_w=\frac{V_w}{V_v}$이며 하이드레이트 포화도, $S_h=\frac{V_w}{V_v}$, 가스 포화도, $S_g=\frac{V_g}{V_v}$로 정의된다. 본 실험의 결과 투과도는 가스의 부피비, $\frac{V_g}{V}=nS_g$에 민감한 반응을 보였으며, 비저항은 공극수의 부피비, $\frac{V_w}{V}=nS_w$에 민감한 반응을 보였다. 또한 p파 속도는 고체의 부피비, $\frac{V_s+V_h}{V}=n(1-S_h)$에 민감한 반응을 보였다. 이러한 실험의 결과는 가스하이드레이트 개발, 생산 연구에 있어 기초 물성자료로 활용되는데 도움을 줄 것이다.

  • PDF

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data

  • Tahir, Muhammad;Ali, Iftikhar;Yan, Piao;Jafri, Mohsin Raza;Jiang, Zexin;Di, Xiaoqiang
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.575-584
    • /
    • 2020
  • Electromagnetic (EM) waves used to send signals under seawater are normally restricted to low frequencies (f) because of sudden exponential increases of attenuation (𝛼) at higher f. The mathematics of EM wave propagation in seawater demonstrate dependence on relative permeability (𝜇r), relative permittivity (𝜀r), conductivity (𝜎), and f of transmission. Estimation of 𝜀r and 𝜎 based on the W. Ellison interpolation model was performed for averaged real-time data of temperature (T) and salinity (S) from 1955 to 2012 for all oceans with 41 088 latitude/longitude points and 101 depth points up to 5500 m. Estimation of parameters such as real and imaginary parts of 𝜀r, 𝜀r', 𝜀r", 𝜎, loss tangent (tan 𝛿), propagation velocity (Vp), phase constant (𝛽), and α contributes to absorption loss (La) for seawater channels carried out by using normal distribution fit in the 3 GHz-40 GHz f range. We also estimated total path loss (LPL) in seawater for given transmission power Pt and antenna (dipole) gain. MATLAB is the simulation tool used for analysis.

Variation of Physical and Microstructural Properties of Limestone caused by Artificial Freezing and Thawing (인공 동결-융해 풍화에 따른 석회암의 물성 및 미세구조 변화 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.435-449
    • /
    • 2015
  • Physical and microstructural properties of Pungchon and Maggol limestone were investigated quantitatively during 50 cycles of artificial freezing and thawing test. There were decrease in dry weight and P,S-wave velocity, and increase in absorption rate in both rock types. Porosity, pore volume, equivalent diameter, throat thickness and pore orientation were analyzed using X-ray computed tomography images. Porosity increased, and initiation and expansion of pores were investigated as weathering progresses. Physical and microstructural variation in Maggol limestone was larger than that of Pungchon limestone because Maggol limestone has more pores and microcracks at initial state. As this study analyzes physical and microstructural properties of rock specimens comprehensively, it can be applied to further rock weathering study and can be used as fundamental data of construction and resource development in cold regions.