• Title/Summary/Keyword: s-sequences

Search Result 2,909, Processing Time 0.028 seconds

A Proposal for Generating Good Assembly Sequences by Tournament Tree

  • Tsuboi, Kenji;Matsumoto, Toshiyuki;Shinoda, Shinji;Niwa, Akira
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • In seeking further efficiency in production preparation, it is common to examine assembly sequences using digital manufacturing. The assembly sequences affect the product evaluation, so it is necessary to test several assembly sequences before actual production. However, because selection and testing of assembly sequences depends on the operator's personal experience and intuition, only a small number of assembly sequences are actually tested. Nevertheless, there is a systematic method for generating assembly sequences using a contact-related figure. However, the larger the number of parts, the larger the number of assembly sequences geometric becomes. The purpose of this study is to establish a systematic method of generating efficient assembly sequences regardless of the number of parts. To generate such assembly sequences selectively, a "Tournament Tree," which shows the structure of an assembly sequence, is formulated. Applying the method to assembly sequences of a water valve, good assembly sequences with the same structure as the Tournament Tree are identified. The structure of such a Tournament Tree tends to have fewer steps than the others. As a test, the structure is then applied for a drum cartridge with 38 parts. In all the assembly sequences generated from the contact-related figures, the best assembly sequence is generated by using the Tournament Tree.

On Lengthening the Period of Known Binary Sequences Preserving the Ideal Autocorrelation

  • No, Jong-Seon;Yang, Kyeong-Cheol;Chung, Ha-Bong;Song, Hong-Yeop
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.217-222
    • /
    • 1997
  • Recently, No et al. presented a new construction of binary sequences with ideal autocorrelation property. In this paper, we applied this method into some of the well-known binary sequences with ideal autocorrelation, and the results are described in detail. First, the GMW sequences are shown to be a natural extension of m-sequences with respect to this method. Second, new binary sequences with ideal autocorrelation property are explicitly constructed from Legendre sequences, Hall's sextic residue sequences, and other known sequences of miscellaneous type.

  • PDF

A Note on Stationary Linearly Positive Quadrant Dependent Sequences

  • Kim, Tae-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.249-256
    • /
    • 1995
  • In this note we prove an invariance principle for strictly stationary linear positive quadrant dependent sequences, satifying some assumption on the covariance structure, $0 < \sum Cov(X_1,X_j) < \infty$. This result is an extension of Burton, Dabrowski and Dehlings' invariance principle for weakly associated sequences to LPQD sequences as well as an improvement of Newman's central limit theorem for LPQD sequences.

  • PDF

Protein Sequence Search based on N-gram Indexing

  • Hwang, Mi-Nyeong;Kim, Jin-Suk
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 2006
  • According to the advancement of experimental techniques in molecular biology, genomic and protein sequence databases are increasing in size exponentially, and mean sequence lengths are also increasing. Because the sizes of these databases become larger, it is difficult to search similar sequences in biological databases with significant homologies to a query sequence. In this paper, we present the N-gram indexing method to retrieve similar sequences fast, precisely and comparably. This method regards a protein sequence as a text written in language of 20 amino acid codes, adapts N-gram tokens of fixed-length as its indexing scheme for sequence strings. After such tokens are indexed for all the sequences in the database, sequences can be searched with information retrieval algorithms. Using this new method, we have developed a protein sequence search system named as ProSeS (PROtein Sequence Search). ProSeS is a protein sequence analysis system which provides overall analysis results such as similar sequences with significant homologies, predicted subcellular locations of the query sequence, and major keywords extracted from annotations of similar sequences. We show experimentally that the N-gram indexing approach saves the retrieval time significantly, and that it is as accurate as current popular search tool BLAST.

  • PDF

Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences

  • Choi, Gang-Guk;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.27 no.2
    • /
    • pp.75-82
    • /
    • 2012
  • $Arthrospira$ $platensis$ and $Arthrospira$ $maxima$ are species of cyanobacteria used in health foods, animal feed, food additives, and fine chemicals. This study conducted a comparison of the 16S rRNA gene and $cpcBA$-intergenic spacer ($cpcBA$-IGS) sequences in $Arthrospira$ strains from culture collections around the world. A cluster analysis divided the 10 $Arthrospira$ strains into two main genotypic clusters, designated I and II, where Group I contained $A.$ $platensis$ SAG 86.79, UTEX 2340, $A.$ $maxima$ KCTC AG30054, and SAG 49.88, while Group II contained $A.$ $platensis$ PCC 9108, NIES 39, NIES 46, and SAG 257.80. However, although $A.$ $platensis$ PCC 9223 belonged to Group II-2 based on its $cpcBA$-IGS sequence, this strain also belonged to Group I based on its 16S rRNA gene sequence. Phylogenetic analyses based on the 16S rRNA gene and $cpcBA$-IGS sequences showed no division between $A.$ $platensis$ and $A.$ $maxima$, plus the 16S rRNA gene and $cpcBA$-IGS sequence clusters did not indicate any well-defined geographical distribution, instead overlapping in a rather interesting way. Therefore, the current study supports some previous conclusions based on 16S rRNA gene and $cpcBA$-IGS sequences, which found that $Arthrospira$ taxa are monophyletic. However, when compared with 16S rRNA sequences, $cpcBA$-IGS sequences may be better suited to resolve close relationships and intraspecies variability.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR POSITIVELY DEPENDENT SEQUENCES

  • KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.111-117
    • /
    • 1994
  • In this note we prove a functional central. limit theorem for LPQD sequences, statisfying some moment conditions. No stationarity is required. Our results imply an extension of Birkel's functional central limit theorem for associated processt'S to an LPQD sequence and an improvement of Birkel's functional central limit theorem for LPQD sequences.

  • PDF

Generalized Digital Prolate Spheroidal Sequences in Digital Distance Protection

  • Chung, Sae-Young;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.55-58
    • /
    • 1991
  • A generalization to the Digital Prolate Spheroidal Sequences is investigated, so that the Generalized Digital Prolate Spheroidal Sequences(GDPSS's) can be used as a powerful time window with many desirable properties. The GDPSS's in the form of the time window has 3 parameters with which we can control the shape of the window freely. Hence, GDPSS's can be used as the very useful time windows especially for digital distance protection.

  • PDF

LINEARLIZATION OF GENERALIZED FIBONACCI SEQUENCES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.443-454
    • /
    • 2014
  • In this paper, we give linearization of generalized Fi-bonacci sequences {$g_n$} and {$q_n$}, respectively, defined by Eq.(5) and Eq.(6) below and use this result to give the matrix form of the nth power of a companion matrix of {$g_n$} and {$q_n$}, respectively. Then we re-prove the Cassini's identity for {$g_n$} and {$q_n$}, respectively.

Probing the Functional Motifs of Escherichia coli 5S rRNA in Relation to 16S rRNA Using a SELEX Experiment

  • 고재형;조봉래;안정근;이용훈;박인원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1335-1339
    • /
    • 1999
  • The function of 5S rRNA, a constituent of a large subunit of ribosome, is not clearly known yet. To identify RNA motifs interacting with 5S rRNA, and thereby to get an insight into the function of 5S rRNA in the ribosome, a SELEX (Systematic Evolution of Ligands by Exponential Enrichment) experiment was performed. RNA molecules binding to Escherichia coli 5S rRNA were selected from a 48-mer random sequence library through 12 rounds of selection, cloned, and sequenced. Two groups of the selected RNA molecules had the consensus sequences GCGG and GUGAAA, respectively, which are present in the segment, G688 through A696, of E. coli 16S rRNA. The gel mobility shift assay showed that 5S rRNA interacted with the 16S rRNA fragment containing the GCGG and GUGAAA sequences. The enzymatic protection experiment shows that the A29CCUGA34 and G51AAGUG56 sequences of 5S rRNA and the C680AGG683 and G688CGG691 sequences of the 16S rRNA fragment are involved in the interaction between the two RNA molecules. On the basis of this observation, we suggest that 5S rRNA and 16S rRNA play a role for the association of two ribosomal subunits.

Identification of Salmonella pullorum Genomic Sequences Using Suppression Subtractive Hybridization

  • Li, Qiuchun;Xu, Yaohui;Jiao, Xinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.898-903
    • /
    • 2009
  • Pullorum disease affecting poultry is caused by Salmonella enterica serovar Pullorum and results in severe economic loss every year, especially in countries with a developing poultry industry. The pathogenesis of S. Pullorum is not yet well defined, as the specific virulence factors still need to be identified. Thus, to isolate specific DNA fragments belonging to S. Pullorum, this study used suppression subtractive hybridization. As such, the genome of the S. Pullorum C79-13 strain was subtracted from the genome of Salmonella enterica serovar Gallinarum 9 and Salmonella enterica serovar Enteritidis CMCC(B) 50041, respectively, resulting in the identification of 20 subtracted fragments. A sequence homology analysis then revealed three types of fragment: phage sequences, plasmid sequences, and sequences with an unknown function. As a result, several important virulence-related genes encoding the IpaJ protein, colicin Y, tailspike protein, excisionase, and Rhs protein were identified that may play a role in the pathogenesis of S. Pullorum.