• Title/Summary/Keyword: s modulus tensile properties

Search Result 295, Processing Time 0.026 seconds

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

Development of Environmental Friendly Nanocomposites using Poly(lactic acid) and Nanomer®I.44P (Poly(lactic acid)와 Nanomer®I.44P를 이용한 친환경 나노복합체 개발)

  • Cho, Won-Ju;Whang, Key;Kim, Jun Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.3
    • /
    • pp.77-84
    • /
    • 2014
  • Biodegradable nanocomposites were fabricated with poly (lactic acid) (PLA) and Nanomer$^{(R)}$ I.44P using ultrasonication (US). Processing conditions were optimized to obtain the maximum tensile properties of the nanocomposites. Poly (ethylene glycol) (PEG) was used as a plasticizer to avoid the brittleness of nanocompsoties. In order to disperse nanoclay into the PLA matrix, PEG and Nanomer$^{(R)}$ I.44P were firstly mixed and dispersed in the chloroform and followed by ultrasonication for 1 min With 10% PEG 400, tensile stress and Young's modulus of the nanocomposites decreased from 53.5 MPa and 2225 MPa to 37.0 MPa and 1757 MPa, respectively, while the elongation was increased from 4% to 21%. Tensile stress, Young's modulus, and elongation of nanocomposites were also increased with nanoclay concentration up to 2% (w/w) and were decreased with further increase in the nanoclay concentration. Transmittance of nanocomposites were significantly decreased from 62.5% for pure PLA film to 7.8% for 5% nanoclay containing nanocomposites. Water vapor permeability of the nanocomposites was also significantly decreased with nanoclay concentration and the minimum WVP of $3.5{\times}10^{-11}g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ was obtained with 5% (w/w) nanoclay concentration. The PLA/Nanomer$^{(R)}$ I.44P nanocomposites showed a great potential as a environmental friendly food packaging material.

  • PDF

Fabrication and Evaluation of Wear Properties of CF/GNP Composites (Graphene Nanoplatelets을 첨가한 탄소직조복합재료의 제조 및 마모 특성 평가)

  • Kim, S.J.;Park, S.B.;Huh, C.H.;Song, J.I.
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • CNT and GNP have several excellent mechanical properties including, high strength, Young's modulus, thermal conductivity, corrosion resistance, electronic shielding and so on. In this study, CF/CNT, GNP/epoxy composites were manufactured by varying the CNT weight ratio at 2wt% and 3wt%, GNP weight ratio at 0.5wt% and 1 wt%. The composites were manufactured by mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D638, D256 and D3181 respectively. The results showed that, CF/GNP0.5 wt%/epoxy composites gave good mechanical property in all composites, e.g., tensile strength, impact and were resistance.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Engineering Properties of Eco-Permeable Polymer Concretes Using Blast Furnace Slag Powder and Stone Dust

  • Park Phil Woo;Sung Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.47-53
    • /
    • 2004
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankments, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using blast furnace slag powder and stone dust of industrial by-products as fillers for Eco-permeable polymer concrete. Different mix proportions were tried to find an optimum mix proportion of the Eco­permeable polymer concrete. The tests were carried out at $20{\pm}1^{circ}C$ and $60{\pm}2\%$ relative humidity. At 7 days of curing, unit weight, coefficient of permeability, dynamic modulus of elasticity, compressive, flexural and splitting tensile strengths ranged between $1,821{\~}1,955 kg/m^{3}$, $0.056{\~}0.081\;cm/s$, $114{\times}0^{2}{\~}157{\times}10^{2}\;MPa,\;17.6{\~}24.7\;MPa,\;5.98{\~}7.94\;MPa\;and\;3.43{\~}4.70\;MPa$, respectively. It was concluded that the blast furnace slag powder and stone dust can be used in the Eco-permeable polymer concrete.

Correlation of mineralogical and textural properties with mechanical qualities of granite dimension stone from the Namwon area, Korea (남원지역 화강암 석재의 품질, 암석조직과 구성광물의 비교연구)

  • 홍세선;윤현수;이병태
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.105-121
    • /
    • 2004
  • The purpose of this study is to investigate the relationship between petrographical and engineering properties of granitic rocks, widely used as building and ornamental stones in Korea, at the Namwon are a. This area is one of the most famous area as a domestic dimension stone production. The granitic rocks were examined for grain sizes, modal compositions and then same samples were tested to determine specific gravity, water absorption, porosity, uniaxial compressive strength, tensile strength, abrasive hardness, P-wave velocity, modulus of elasticity and Poisson's ratio. It is suggested that the influence of the grain size on the engineering properties is more important than that of the mode of mineralogical compositions. And quartz contents also significantly influence the engineering properties of granitic rocks.

A Study on the Optimal Conditions by Means of Experimental Design for Preparation of Starch/PVA Blends 2. Multiplex Mixture Optimal Method (실험계획법을 이용한 전분/PVA 블렌드 제조 최적조건 탐구에 관한 연구 2, 다중혼합물 최적법)

  • Hong, young-Keun;Lee, Myoung-Seok
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • Optimal conditions for preparation of starch/PVA blends were investigated with the consideration of factors that may influence mechanical properties of the blends. Multiplex mixture optimal method as a statistical method were performed and then tensile strength, strain at break, Young's modulus and tear strength of films of the blends were measured to determine the optimal conditions for preparation. The mechanical properties needed for the degradable agricultural mulch were the target of this experiment. Results showed that although the strain at break was a little insufficient, the other properties were very close to the target. This means that the mechanical properties of the film from this blend as a whole are very compatible with those of the reference mulch.

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.

Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization (박리형 PCL/Clay 나노복합재료 제조와 특성)

  • 유성구;박대연;배광수;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.421-426
    • /
    • 2001
  • 11-Aminododecanoic acid, to insert the functional group of -COOH reacted with the end group of poly($\varepsilon$-caprolactone) diol, and cetyltrimethylammonium bromide (CTMA), to increase the d-spacing of Montmorillonite (MMT), were intercalated into $Na^+;_-$MMT. The modified MMT was reacted with poly(${varepsilon}-caprolactone$) diol ($M_n{=2000$) in THF solution at $80^{\circ}C$ for 4 hrs. After reaction, poly(${varepsilon}-caprolactone$) ($M_n{=80000$) was mixed into the solution for 12 hrs. To prepare the PCL/clay nanocomposite film this solution was cast into the silicon mold at $60^{\circ}C$ in vacuum oven for 6 hrs. From the results of XRD and TEM, it was found that the exfoliated PCL/clay nanocomposite were prepared. The effects of the amount of MMT on the mechanical properties and thermal properties of PCL/clay nanocomposites have been investigated by tensile tester and DSC. Because the MMT was dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite were found to be excellent. However, MMT dispersed in PCL matrix had almost no effect on the tensile strength of the composites. The crystallization temperature of PCL increased in proportion to 3 wt% MMT in the PCL matrix.

  • PDF

Rheological Studies on Cocoon Filament. IV. Relationship between Cocoon Bave and Sericin Solubility or Tensile Properties of Cocoon Fibre (견사의 탄성적성질에 관한 연구 IV. 견사 및 견층용해도와 견사의 기계적성질과의 관계)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.15 no.2
    • /
    • pp.29-33
    • /
    • 1973
  • This experimental work was carried out to examine the relation between the filament characteristic and the tensile property of various cocoon varieties. Cocoons of 21 varieties were used as materials, from which, bave denier (X$_1$), sericin solubility (X$_2$), tenacity (Y$_1$), elongation (Y$_2$), and Young's modulus (Y$_3$) were tested. The formulae estimating tensile properties with denier and sericin solubility are as follows: A) In case of denier. Y$_1$= -0.4X$_1$+5.03 Y$_2$=1.2X$_1$+2.7 Y$_3$= -25.2X$_1$+140.95 B) In case of sericin solubility Y$_1$= -2.4X$_2$+3.43 Y$_2$=20X$_2$+3.7 Y$_3$= -120X$_2$+78.37.

  • PDF