• 제목/요약/키워드: s modulus tensile properties

검색결과 295건 처리시간 0.023초

경년열화가 증용량 저이도 송전선의 기계적특성에 미치는 영향 (II) (Effect of Mechanical Properties by a Long Term Operation in High Capacity and Low Sag Conductor ( II ))

  • 김상수;김병걸;신구용;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.100-106
    • /
    • 2006
  • Today, restricted energy sources, environmental considerations and the high cost of transporting fuel have limited the number and location of available power plant sites. The pressures resulting from these conditions have tended to require the construction of long, high-capacity, high-voltage power lines. it's used to adapt to STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced) conductor for coping with these situations. STACIR/AW conductor was formed by the combination of INVAR/AW as the core for low sag and super thermal-resistant aluminum alloy conductor for current capacity increase. increase of temperature by current capacity and long span lines make the susceptible to the deterioration of thermo-mechanical properties(conductivity, tensile strength, E-modulus and twist property et al). In the present work, changes of thermo-mechanical properties with aging have been studied in STACIR/AW $410 mm^2$ conductor with forms of single wire and strand wire.

Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium

  • Babaahmadi, Arezou;Tang, Luping;Abbas, Zareen;Martensson, Per
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.295-306
    • /
    • 2015
  • Simulating natural leaching process for cementitious materials is essential to perform long-term safety assessments of repositories for nuclear waste. However, the current test methods in literature are time consuming, limited to crushed material and often produce small size samples which are not suitable for further testing. This paper presents the results from the study of the physical (gas permeability as well as chloride diffusion coefficient) and mechanical properties (tensile and compressive strength and elastic modulus) of solid cementitious specimens which have been depleted in calcium by the use of a newly developed method for accelerated calcium leaching of solid specimens of flexible size. The results show that up to 4 times increase in capillary water absorption, 10 times higher gas permeability and at least 3 times higher chloride diffusion rate, is expected due to complete leaching of the Portlandite. This coincides with a 70 % decrease in mechanical strength and more than 40 % decrease in elastic modulus.

Poly(amic acid)와 PBO 전구체의 블렌드 제조 및 특성 (Preparation of the Blends of Poly(amic acid) and PBO Precursor and Their Properties)

  • 윤두수;최재곤;조병욱
    • 폴리머
    • /
    • 제32권1호
    • /
    • pp.77-84
    • /
    • 2008
  • Poly(amic acid) (PAA)와 팬던트를 갖는 poly(o-hydroxyamides) (PHAs)를 섞은 고분자 블렌드의 열적 성질, 모폴로지, 기계적 성질, 기체투과도 등을 조사하였다. 블렌드들의 5%와 최대분해온도는 각각 $348{\sim}407$, $589{\sim}615^{\circ}C$의 범위를 가졌다. 열처리후 블렌드들의 인장강도와 초기 탄성률은 순수한 PAA보다 각각 $3.7{\sim}52.9$, $34.4{\sim}70%$ 증가하였으며, 특히 PAA/MP-PHA=9/1의 경우 각각 97.50 MPa, 2.67 GPa로써 최대 값을 보였다. 블렌드에서 PHA의 domain들의 분산정도는 비교적 균일하게 잘 분산되어 있었으며 PAA와 PHA두 상간의 계면 접착력이 매우 좋음을 확인하였다. PAA/M-PHA 블렌드의 기체투과도는 M-PHA의 함량 증가와 함께 증가하였다.

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

3-Dimensional Thermoforming Computer Simulation Considering Orthotropic Property of Film

  • Son, Hyun-Myung;Yoon, Seok-Ho;Lee, Ki-Ho;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제57권3호
    • /
    • pp.114-120
    • /
    • 2022
  • The tensile properties of the extruded PC film were measured in the extrusion direction and perpendicular to the extrusion direction. The measured properties were the elastic modulus and Poisson's ratio at the glass transition temperature of PC. The measured orthotropic properties of the film were used for the computer simulation of vacuum forming. In this simulation, three mold shapes were tested: dome, trapezoid, and cubic, and the vacuum was applied between the mold surface and the heated film. The stress, strain, thickness, and stretch ratio distributions of the film in different mold shapes were observed and compared. The thermoforming simulation method used in this study and the obtained results, considering the determined orthotropic properties, can be applied to the thermoforming of various three-dimensional shapes.

생분해성 PBAST와 변형 열가소성 전분 블렌드의 특성 (Characteristics of Biodegradable Blends of PBAST and Chemically Modified Thermoplastic Starch)

  • 신부영
    • 폴리머
    • /
    • 제35권6호
    • /
    • pp.580-585
    • /
    • 2011
  • 본 연구는 석유유래 생분해성 고분자인 poly(butylene adipate-co-succinate-co-terephthalate)(PBAST)의 생분해도와 친환경성을 높이기 위하여 변형 열가소성 전분(CMPS, chemically modified thermoplastic starch)을 첨가하였다. CMPS는 천연고분자인 전분을 가소제, maleic anhydride(MA) 및 반응개시제로 반응시켜 제조한 일종의 식물유래 생분해성 수지이다. PBAST/CMPS 블렌드의 파단면 사진으로부터 PBAST와 CMPS 상이 분리된 비혼화성 (immiscible blend) 블렌드이지만 상 사이의 계면 형상이 좋은 상용성 블렌드임을 알 수 있었다. 인장강도와 연신율은 CMPS 함량이 증가함에 따라 감소하였지만 탄성률은 증가하였다. 블렌드의 생분해도는 순수 PBAST에 비해 매우 높았고 CMPS의 함량이 증가함에 따라 증가하였다.

GNP 첨가 탄소복합재료의 제조 및 마모 특성 평가 (Fabrication and Performance Evaluation of Carbon Fiber/Graphene Nano-Platelets Composites for Wear Resistance Application)

  • 박승빈;박진철;조창우;송정일
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.531-536
    • /
    • 2015
  • GNPs have several excellent mechanical properties including high strength, a good young's modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.

항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구 (Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point)

  • 윤승채;문만빈;김형섭
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Mechanical and Thermal Properties of Liquefied Wood Polymer Composites (LWPC)

  • Hyun, Doh Geum;Kang, In Aeh;Lee, Sun Young;Kong, Young To
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.67-73
    • /
    • 2004
  • The influence of liquefied wood (LW) on the mechanical and thermal properties of liquefied wood-polymer composites (LWPC) was investigated in this study. The thermal behaviors of LWPC were characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. LW showed significant effects on the mechanical strength properties. The increase of flexural MOE and Young's modulus was related to the increase of stiffness of LWPC. The effect of LW was also significant on the flexural and tensile MOR. The impact strength decreased with the increase of LW application level. With the increased stress concentration by the poor bonding between LW and polymer, the impact strength of LWPC decreased, compared with that of high-density polyethylene (HDPE). The thermal stability of LWPC decreased with the increase of LW content up to 40%. The melting temperature of HDPE decreased with the increase of LW loading level. Enthalpy of HDPE also decreased with the addition of LW. This study proves the thermal stability necessary for the consolidation of composition materials.