• 제목/요약/키워드: rural freeway

검색결과 6건 처리시간 0.02초

고속도로 자유교통류 속도의 미시적 특성에 관한 연구 (Analysis Study on the Microscopic Characteristics of Freeway Free Flow Speed)

  • 윤병조
    • 대한토목학회논문집
    • /
    • 제30권2D호
    • /
    • pp.105-111
    • /
    • 2010
  • 주행속도는 고속도로 설계와 운영에 있어 주요한 요소 중 하나이다. 거시적으로 자유교통류 속도(FFS)를 분석한 몇 몇 연구가 보고되고 있으나, 표본수가 적고 교통량과 일중 시간대의 영향을 고려하지 않았다. 본 연구는 FFS의 특성을 분석하기 위해 방대한 양의 표본을 이용하여 자유교통류 상태에서 교통량 수준별 일중 시간대별에 따른 FFS의 분포와 Percentile속도를 미시적으로 분석하였다. 분석결과, 속도분포는 교통량(1-5대/30초)과 일중 시간대(0-5, 6-8, 9-11, 12-19, 20-23)에 따라 변화하였으며 다른 행태를 보였다. 아침, 저녁, 심야 시간대의 V85(85th Percentile 속도)는 교통량이 증가함에 따라 감소하였지만, 오전과 오후 시간대의 V85는 큰 변화를 보이지 않았다. 따라서 시간대에 따른 V85는 교통량이 증가함에 따라 급격하게 변화하였다.

GPS/INS 센서 자료를 이용한 도로 평면선형인식 알고리즘 개발 (Algorithm for Identifying Highway Horizontal Alignment using GPS/INS Sensor Data)

  • 정은비;주신혜;오철;윤덕근;박재홍
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.175-185
    • /
    • 2011
  • 도로기하구조정보는 도로의 안전성평가 및 도로의 유지관리를 위한 필수적인 요소이다. 본 연구에서는 GPS(Global Positioning System)/INS(Inertial Navigation System)센서가 탑재된 조사차량을 이용하여 기하구조정보를 수집하였으며, 수집된 차량의 자세정보 중 평면선형과 관련된 Roll, Heading 자료를 이용하여 직선, 원곡선, 완화곡선을 구분하는 알고리즘을 개발하였다. 본 연구에서는 평면선형 인식 이전에 전처리 과정으로 이동평균법을 통하여 자료를 평활화함으로써 원시자료의 이상치를 제거하여 평면선형 인식의 신뢰성을 제고하였다. 유전알고리즘(GA, Genetic Algorithm)을 이용하여 분류정확도(CCR, Correct Classification Rate)를 최대로 하는 알고리즘 파라미터를 설정한 결과 100%의 분류정확도를 보였다. 설정된 파라미터를 이용하여 고속도로와 국도 주행자료를 이용하여 알고리즘을 평가한 결과 90.48%와 88.24%의 분류정확도를 보여, 제안된 평면선형인식 알고리즘은 현장에서 적용 시 높은 신뢰도를 가지는 정보를 제공 가능한 것으로 분석되었다. 본 연구에서 개발한 평면선형인식 알고리즘은 조사차량에 GPS/INS센서의 소프트웨어로 탑재되어 도로 및 교통기술자에게 도로기하구조정보를 보다 용이하게 수집하고 분석할 수 있는 환경을 제공하는데 기여할 것으로 기대된다.

LOS A 저밀도 상태에서 고속도로 자유교통류 속도의 동질성에 관한 연구 (Study for the Homogeneity of Freeway Free-Flow Speed under the State of LOS-A Low Density)

  • 윤병조;오승훈
    • 대한토목학회논문집
    • /
    • 제31권6D호
    • /
    • pp.779-784
    • /
    • 2011
  • 서비스 수준 (LOS) A 상태의 고속도로 자유교통류 속도(FFS)는 교통량 수준에 따라 동질적이라고 고려되어지고 있다. 저밀도 자유교통류 속도의 특성은 제한최고속도 결정, 교통사고 분석, 모의실험 모형의 개발 등에 기초자료로 활용된다. 설계 및 운영 속도의 거시적 특성에 대한 연구가 보고된 정도이며, 저밀도 상태에서 고속도로 자유교통류 속도의 미시적 특성에 관한 연구는 보고되고 있지 않다. 따라서 본 연구에서는 방대한 양의 속도, 교통량 자료를 이용하여 교통량 수준(1-3대/30초)별 일중 시간대(0-5, 6-8, 9-11, 12-19, 20-23)에 따른 저밀도 상태에서 FFS의 특성을 미시적으로 분석하였다. 분석결과, 속도분포는 일중 시간대의 교통량 수준에 따라 변화하였으며 다른 특성을 보였다. 이른 아침 및 야간 시간대의 V85(85th percentile 속도)는 교통량이 증가함에 따라 감소하였지만, 주간 시간대의 V85는 큰 변화를 보이지 않았다. 특히, 이른 아침 및 야간 시간대의 교통량 수준별 FFS는 저밀도 상태임에도 불구하고 이질적으로 분석된 반면, 주간 시간대는 동질적으로 분석되었다.

위험물 운송을 위한 조기경보시스뎀 성능평가 (Performance Evaluation of Advance Warning System for Transporting Hazardous Materials)

  • 오세창;조용성
    • 한국ITS학회 논문지
    • /
    • 제4권1호
    • /
    • pp.15-29
    • /
    • 2005
  • 국가응급대응정보시스템(NERIS)개발의 일부인 수송안전정보부분은 최적수송경로제공시스템과 수송사고 조기 경보시스템으로 구분된다. 본 연구는 조기경보시스템을 구축하기 위한 것으로 유해화학물질을 수송하는 차량에 대하여 수송시 차량의 위치 및 위험출의 상태를 실시간으로 모니터링 함으로써 수송시 발생할 수 있는 유고에 따른 피해(화재, 폭발, 가스 유출 등)를 사전에 방지하거니- 조기 감지하는 것을 목적으로 한다. 본 인구는 CPS와 CDMA, GIS 기술을 통해 위험물 차량의 통행이 허용되어 있는 노선을 택하고 있는지 모니터링 할 뿐만 아니라 위험물 차량의 사고발생시점과 위치를 신속히 파악하여 긴급 대응할 수 있는 시스템을 개발하고 수행능력을 평가하여 실제 저용 가능성을 확인하고자 수행되었다 평가결과, 각 실험구간에서의 통신 정확도는 고속도로 구간 99$\%$, 일반국도 구간 96$\%$, 고지대 구간 97$\%$, 일반지대 구간 99$\%$, 지방부 구간 96$\%$, 도심부 구간 99$\%$, 터널구간 98$\%$로 나타나 개발된 시스템은 현실에 적용해도 문제가 없을 만큼 릎은 통신성공률을 기록하였다. 다만, 단점으로 나타난 것은 무건 통신망을 이용하는 PDA를 차량용 단말기로 채택하여 개발함에 따라 전용 안테나가 적은 지방부나 통신 음영지역에서는 차량용 단말기와 운영서버와의 통신에 문제가 나타난다는 한계가 있다 따라서, 향후 본 시스템의 상용화를 위해서는 지방부나 터널 등 통신음영지역에 단점으로 나타난 무선 통신의 한계를 극복 할 수 있도록 CDMA, DSRC, 무선데이터 등 다양한 통신기술의 복합적 활용 방안과 위험물 운송차량의 모니터링 목적에 맞는 전용 단말기 개발이 필요할 것이다. 또한, 현재 특별한 유해물질 관리체계 및 규약이 존재하지 않은 우리나라에서는 본 시스템을 통해 위험물 수송을 위한 지침으로의 활용방안에 관한 연구가 필요하다. 아울러, 개발된 시스템을 이용하여 위험뭍 차량관리 이외에도 특정 폐기물의 무단 방치 및 폐기 등의 불법적인 행위에 대한 자동단속이 가능하도록 서비스 분야의 전략적 확대 등 정책적 측면에서의 연구도 병행되어야 할 것으로 판단된다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF