• Title/Summary/Keyword: runoff-water

Search Result 2,678, Processing Time 0.031 seconds

Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network (Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측)

  • Heo, Chang-Hwan;Lim, Kee-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

A study on the rainfall runoff from paddy fields in the small watershed during Irrigation period (관개기관중 답유역에서의 강우유출량 추정에 관한 연구)

  • 김채수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.99-108
    • /
    • 1982
  • This thesis aims to estimate the rainfall runoff from paddy field in a small watershed during irrigation period. When the data observed at the proposed site are not available, the Monthly Runoff Equation of Korean Rivers which was derived from data observed under the following assumptions is used to study the water balance. a. Monthly base flow was assumed as 10. 2mm even if these is no mouthly rainmfall. b. Monthly comsumption of rainfall was ranged from 100 to 2OOmm without relation to the rainfall depth. However, the small watershed which consists mainly of paddy fields encounters severe droughts and accordingly the baseflow is negligible. Under the circumstances the author has developed the following equation called "Flood Irrigation Method for Rainfall Runoff "taking account of the evapotranspiration, precipitation, seepage, less of transportation, etc. R= __ A 7000(1 +F) -5n(n+1)+ (n+1)(Pr-S-Et)] where: R: runoff (ha-m) A: catchment area (ha) F: coefficient of loss (o.o-0. 20) Pr: rainfall (mm) S: seepage Er: evapotranspiration (mm) To verify the above equation, the annual runoff ratio for 28 years was estimated using the Monthly Runoff Equation of Korean Rivers the Flood Irrigation Method and the Complex Hydrograph Method based on meteorological data observed in the Dae Eyeog project area, and comparison was made with data observed in the Han River basin. Consequently, the auther has concluded that the Flood Irrigation Method is more consi- stent with the Complex Hydrograph Method and data observed than the Monthly Runoff Equation of Korean Rivers.

  • PDF

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Optimal Location of Best Management Practices for Storm Water Runoff Reduction (우수유출저감 시설의 최적위치 결정)

  • Jang, Su Hyung;Lee, Jiho;Yoo, Chulsang;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.180-184
    • /
    • 2008
  • A distributed hydrologic model of an urban drainage area on Bugok drainage area in Oncheon stream was developed and combined with a optimization method to determine the optimal location and number of best management practices (BMPs) for storm water runoff reduction. This model is based on the SCS-CN method and integrated with a distributed hydrologic network model of the drainage area using system of 4,211 hydrologic response units (HRUs). Optimal location is found by locating HRU combination that leads to a maximum reduction in peak flow at the drainage outlet in this model. The results of this study indicate the optimal locations and numbers of BMPs, however, for more exact application of this model, project cost and SCS-CN reduction rate of structural facilities such infiltration trench and pervious pavement will have to be considered.

Monitoring of Hydrological and Water Quality in Dongjin-River Hengjeong Bridge Watershed for Agricultural Watershed Non-Point Pollutant Sources Management (농업유역 비점오염 관리를 위한 동진강 행정교 유역의 수문·수질 모니터링)

  • Son, Jae-Gwon;Son, Tae-Ho;Choi, Jin-Kyu;Jo, Jae-Young;Goh, Nam-Young;Oh, Jin-Hyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.55-63
    • /
    • 2012
  • This study was performed to investigate the stream water quality characteristics in Hengjeong Bridge Basin of Dongjin River during twelve months from October, 2010 to September, 2011. Also, pollutant loads were calculated on the basis of the water quality and runoff results. The results showed that ranges of water temperature, pH and EC were $6.2{\sim}23.90^{\circ}C$, 6.32~7.78, $84.4{\sim}126.5{\mu}S/cm$ respectively. The Concentration of DO, BOD, COD, SS, Tot-N and Tot-P were observed as 6.80~9.20 mg/L, 0.40~1.60 mg/L, 1.96~4.41 mg/L, 59.60~142.20 mg/L, 1.28~3.52 mg/L, 0.001~0.07 mg/L respectively. Tot-N showed correlativity with BOD, and Tot-P showed correlativity with SS. The runoff pollutant loading of Tot-N and Tot-P were 117.94 kg/ha and 2.06 kg/ha respectively, in Hengjeong bridge of Dongjin river watershed. In the case of the correlativity between runoff pollutant loads and concentrations, Tot-N and Tot-P show low significant relationships.

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Flood Effects Analysis of Reservoir Basin through the Linkage of HEC-HMS and HEC-RAS Models (HEC-HMS와 HEC-RAS모형의 연계에 의한 댐 유역의 홍수영향 분석)

  • Lee, Weon-Hee;Kim , Sun-Joo;Kim , Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.15-25
    • /
    • 2004
  • For the effective operation of irrigation reservoirs, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. In this study, the flood effective analysis system was developed through the integration of long-term water budget analysis model, GIS-based HEC-HMS model and HEC-RAS model. The system structure consists of long-term water budget model using modified TANK theory, flood runoff and flood effects analysis model using HEC-GeoHMS, HEC-HMS and HEC-RAS models. The flood effects analysis system simulated the flood runoff from the upstream, downstream flood and long-term runoff of the watershed using the observed data collected from 1998 to 2002 of Seongju dam. The simulated results were reasonably good compared with the observed data. The optimal management method of the reservoir during the whole season is suggested in this study, and the flood analysis system can be a useful tool to evaluate a reservoir operation quantitatively for the mitigation of flood damages of reservoir basin.

Grid-Based KlneMatic Wave STOrmRunoff Model (KIMSTORM)(I) - Theory and Model - (격자기반의 운동파 강우유출모형 개발(I) - 이론 및 모형 -)

  • Kim, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.303-308
    • /
    • 1998
  • A grid-based KInematic were STOrm Runoff Model (KIMSTORM) with predicts temporal and spatial distributions of saturalted orerland flow, subsurface flow and stream flow in a watershed was developed. The model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each grid element by using grid-based water balance of hydrologic components. The model which is programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture within the watershed.

  • PDF

Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods (관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성)

  • Han, Kuk-Heon
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF