• Title/Summary/Keyword: runoff-water

Search Result 2,676, Processing Time 0.031 seconds

Biological soil crusts impress vegetation patches and fertile islands over an arid pediment, Iran

  • Sepehr, Adel;Hosseini, Asma;Naseri, Kamal;Gholamhosseinian, Atoosa
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Background: Plant vegetation appears in heterogeneous and patchy forms in arid and semi-arid regions. In these regions, underneath the plant patches and the empty spaces between them are covered by biological soil crusts (moss, lichen, cyanobacteria, and fungi). Biological soil crusts lead to the formation and development of fertile islands in between vegetation patches via nitrogen and carbon fixation and the permeation of runoff water and nutrients in the soil. Results: The present study has investigated the association of biological soil crusts, the development of fertile islands, and the formation of plant patches in part of the Takht-e Soltan protected area, located in Khorasan Razavi Province, Iran. Three sites were randomly selected as the working units and differentiated based on their geomorphological characteristics to the alluvial fan, hillslope, and fluvial terrace landforms. Two-step systematic random sampling was conducted along a 100-meter transect using a 5 m2 plot at a 0-5 cm depth in three repetitions. Fifteen samplings were carried out at each site with a total of 45 samples taken. The results showed that the difference in altitude has a significant relationship with species diversity and decreases with decreasing altitude. Results have revealed that the moisture content of the site, with biocrust has had a considerable increase compared to the other sites, helping to form vegetation patterns and fertile islands. Conclusions: The findings indicated that biological crusts had impacted the allocation of soil parameters. They affect the formation of plant patches by increasing the soil's organic carbon, nitrogen, moisture and nutrient content provide a suitable space for plant growth by increasing the soil fertility in the inter-patch space.

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Development of underground facility information collection technology based on 3D precision exploration (3차원 정밀탐사 지하시설물 정보 수집 기술 개발)

  • Jisong RYU;Yonggu JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.56-66
    • /
    • 2023
  • Safety accidents are increasing, such as changes in groundwater levels due to construction work or natural influences, or ground cave-ins caused by soil runoff from old water supply and sewage pipes. In addition, underground facility management agencies must make efforts to improve the accuracy of underground information through continuous investigation and exploration in accordance with the Special Act on Enhanced Underground Safety Management. Accordingly, in this study, we defined the configuration of equipment and data processing method to collect 3D precise exploration underground facility information and developed 3D underground facility information collection technology to ensure accuracy of underground facilities. As a result of verifying the developed technology, the horizontal accuracy improved by an average of 6cm compared to the existing method, making it possible to acquire 3D underground facility information within the error range of the public survey work regulations.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models (집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가)

  • Woo, Dong Kook;Jo, Jihyeon;Kang, Boosik;Lee, Songhee;Lee, Garim;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.43-54
    • /
    • 2023
  • Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment (설마천 유역의 혼효림에서 관측된 증발산의 계절변화)

  • Kwon, Hyo-Jung;Lee, Jung-Hoon;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration(${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season(May-July), ${\lambda}E$ in this mixed forest averaged about $2.2\;mm\;d^{-1}$, whereas it was on average $0.5\;mm\;d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was $581\;mm\;y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period(i.e., September to December) for 2007 and 2008 was both ${\sim}110$ mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$ in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$ in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

Reference Values and Water quality Assessment Based on the Regional Environmental Characteristics (해역의 환경특성을 고려한 해양환경 기준설정과 수질등급 평가)

  • Rho, Tae-Keun;Lee, Tong-Sup;Lee, Sang-Ryong;Choi, Man-Sik;Park, Chul;Lee, Jong-Hyun;Lee, Jae-Young;Kim, Seung-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.45-58
    • /
    • 2012
  • For the development of reference values and evaluation of water quality in various environmental conditions, we divided the coastal region around Korean peninsular into 5 distinctive ecological regions based on the influence of surface current, depth, tidal range, turbidity, and climate condition. We used national marine environment monitoring data collected by National Fisheries Research & Development Institute(NFRDI) from 2000-2009. For the reference values, we used maximum seasonal mean from 2000 to 2007 for DIN, DIP, and chlorophyll-a and minimum seasonal mean for secchi depth measured at stations without the influence of river runoff in each ecological regions. For the reference value of bottom dissolved oxygen saturation, we used minimum mean value of 90% calculated from minimal riverine influence stations of whole regions. We calculated enrichment score for each assessment criteria. The enrichment score of DIN, DIP, and Chlorophyll-a was 1 (=< reference value), 2 (< 110% of reference value), 3 (< 125% of reference value), 4 (< 150% of reference value), and 5 (> 150% of reference value). The enrichment score of DO saturation and Secchi depth was 1 (> reference value), 2 (> 90% of reference value), 3 (>75 % of reference value), 4 (> 50% of reference value), and 5 (< 50% of reference value). We calculated water quality index using weighted linear combination of five enrichment score for the comparison of whole regions. From the water quality index distribution calculated from all stations between 2000 and 2007 period, we classified into 5 grade based on the standard deviation calculated from total water quality index. We assigned grade very good(I), good(II), moderate(III), bad(IV), and very bad(V) when the water quality index was less than 23, minimum + 1 sd, +2 sd, +3 sd, and grater than minium+ 3 sd, respectively.

Effect of Tillage System and Livestock Manures on the Silage corn Production and NO3-N Concentration in Leaching Water (경운방법과 가축분뇨 시용이 옥수수의 생산성 및 질소의 용탈에 미치는 영향)

  • Jung, Min-Woong;Jo, Nam-Chul;Kim, Jong-Geun;Lim, Young-Chul;Choi, Ki-Choon;Yoon, Sei-Hyung;Lee, Ki-Won;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.211-216
    • /
    • 2009
  • Approximately 43 million tons of livestock manure (LM) are produced each year on Korean farms. LM can be utilized as a valuable resource and/or it can contaminate water by runoff and leaching through the soil, when LM has been thoughtlessly applied to the land and directly discharged into the water. This experiment was carried out to investigate the effect of no-till system and LM application on dry matter (DM) yield of silage corn and $NO_3$-N concentration in leaching water of lysimeter installed in the experimental field. The treatments were replicated three times in split plot design. Main plots consisted of tillage systems, such as conventional tillage (CT) and no-tillage (NT). Sub plots consisted of the type of LM, such as chemical fertilizer (CF), composted cattle manure (CCM) and composted swine manure (CSM). The control plots were fertilized as commercial chemical fertilizer. DM yields of corn increased significantly in order to CF > CCM > CSM (p<0.05). DM yield of corn in CT increased as comparing with that of corn in NT. Plant height, ear height and stem diameter also increased in order to CF > CCM > CSM. In addition, the root weight in CT was increased as comparing with that of corn in NT. However, there was no interaction effects of between type of LM and tillage system. $NO_3$-N concentration in leaching water of LM application was less than 10 ppm, but $NO_3$-N concentration in CF exceeded 10 ppm which is safety level of drinking water during summer time (rainfall season).

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.