• 제목/요약/키워드: runoff simulation

검색결과 606건 처리시간 0.026초

제주도 하천에 대한 SWAT 모형의 적응 (Application of SWAT Model on Rivers in Jeju Island)

  • 정우열;양성기
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1039-1052
    • /
    • 2008
  • The SWAT model developed by the USDA-Agricultural Research service for the prediction of rainfall run-off, sediment, and chemical yields in a basin was applied to Jeju Island watershed to estimate the amount of runoff. The research outcomes revealed that the estimated amount of runoff for the long term on 2 water-sheds showed fairly good performance by the long-term daily runoff simulation. The watershed of Chunmi river located the eastern region in Jeju Island, after calibrations of direct runoff data of 2 surveys, showed the similar values to the existing watershed average runoff rate as 22% of average direct runoff rate for the applied period. The watershed of Oaedo river located the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of calibrations by runoff data in the occurrence of 7 rainfalls.

제주 천미천 유역의 간헐하천 유출특성 모의 방안 (A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island)

  • 김남원;정일문;나한나
    • 한국환경과학회지
    • /
    • 제22권5호
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

SWAT-SWMM 결합모형의 개발 (I) 모형의 개발 (Development of Coupled SWAT-SWMM Model (I) Model Development)

  • 김남원;원유승
    • 한국수자원학회논문집
    • /
    • 제37권7호
    • /
    • pp.589-598
    • /
    • 2004
  • 장기적 유출 측면에서 유역의 도시화는 불투수면적의 확대로 인한 토지이용변화, 인위적 구조물의 설치여부, 하천 환경의 변화를 유발하며 따라서 도시화되기 이전과 매우 다른 형태의 유출거동 특성을 가진다. 따라서 자연적인 유출 성분변화 특성은 물론 도시화 유역 특성변화요소를 적절히 반영함으로써 지표수, 하천수, 지하수 등의 수문순환 요소를 장기적인 측면에서 정량적으로 평가할 수 있는 유출모의모형이 필요하다. 본 연구에서는 준 분포형 장기 유출모형인 SWAT모형과 도시지역의 유출해석에 주로 이용되는 SWMM 모형의 RUNOFF 블록을 결합함으로써 자연유역은 물론 도시유역의 제반 유역특성을 충분히 고려할 수 있는 장기유출모형인 SWAT-SWMM 모형을 개발하였다. SWAT-SWMM 결합모형의 구정방법 및 모형의 한계 그리고 결합모형의 모식을 중심으로 두 모형의 결합상황을 기술하였다.

인공강우실험에 의한 임도노면의 지표유출량 및 토양유실량 평가 (Predicting Surface Runoff and Soil Erosion from an Unpaved Forest Road Using Rainfall Simulation)

  • 유송;;이은재;임상준
    • 한국환경복원기술학회지
    • /
    • 제18권3호
    • /
    • pp.13-22
    • /
    • 2015
  • Unpaved forest roads are common accessways in mountain areas being used for forestry purposes. The presence of forest roads produces large volumes of surface runoff and sediment yield due to changes in soil properties and hillslope profile. Rainfall simulation experiments were conducted to estimate the impacts of above-ground vegetation and antecedent soil water condition on hydrology and sediment processes. A total of 9 small plots($1m{\times}0.5m$) were installed to represent different road surface conditions: no-vegetation(3 plots), vegetated surface(3 plots), and cleared vegetation surface(3 plots). Experiments were carried out on dry, wet, and very wet soil moisture conditions for each plot. Above ground parts of vegetation on road surface influenced significantly on surface runoff. Runoff from no-vegetation roads(39.24L) was greater than that from vegetated(25.05L), while cleared-vegetation condition is similar to no-vegetation roads(39.72L). Runoff rate responded in a similar way to runoff volume. Soil erosion was also controlled by land cover, but the magnitude is little than that of surface runoff. Even though slight differences among antecedent soil moisture conditions were found on both runoff and soil erosion, runoff rate and soil losses were increased in very wet condition, followed by wet condition. The experiments suggest that vegetation cover on forest road surface seems most effective way to reduce surface runoff and soil erosion during storm periods.

SWAT 모형을 이용한 대유역 강우-유출해석: 메콩강 유역을 중심으로 (Large Scale Rainfall-runoff Analysis Using SWAT Model: Case Study: Mekong River Basin)

  • 이대업;유완식;이기하
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.47-57
    • /
    • 2018
  • This study implemented the rainfall-runoff analysis of the Mekong River basin using the SWAT (Soil and Water Assessment Tool). The runoff analysis was simulated for 2000~2007, and 11 parameters were calibrated using the SUFI-2 (Sequential Uncertainty Fitting-version 2) algorithm of SWAT-CUP (Calibration and Uncertainty Program). As a result of analyzing optimal parameters and sensitivity analysis for 6 cases, the parameter ALPHA_BF was found to be the most sensitive. The reproducibility of the rainfall-runoff results decreased with increasing number of stations used for parameter calibration. The rainfall-runoff simulation results of Case 6 showed that the RMSE of Nong Khai and Kratie stations were 0.97 and 0.9, respectively, and the runoff patterns were relatively accurately simulated. The runoff patterns of Mukdahan and Khong Chaim stations were underestimated during the flood season from 2004 to 2005 but it was acceptable in terms of the overall runoff pattern. These results suggest that the combination of SWAT and SWAT-CUP models is applicable to very large watersheds such as the Mekong for rainfall-runoff simulation, but further studies are needed to reduce the range of modeling uncertainty.

유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가 (Evaluation of the Tank Model Optimized Parameter for Watershed Modeling)

  • 김계웅;송정헌;안지현;박지훈;전상민;송인홍;강문성
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링 (Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme)

  • 박상식;강부식
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

도시 소유역의 유출변화 분석 (Runoff Analysis of Urban Small Watershed)

  • 이기춘;박승우;최진규
    • 한국농공학회지
    • /
    • 제31권1호
    • /
    • pp.45-57
    • /
    • 1989
  • The hydrologic model FESHM was introduced and its applicability was investigated in an attempt to analyze the rainfall-runoff relationships of urban small watersheds and to hereafter predict the envi-ronmental changes. Basic data on rainfall, water level, geomorphological characterisitics and land use were obtained from Yeonwha stream watershed located in Chonju-si Dukjin-dong. WL-5 for simulation o subshed WS# 1(136.7 ha) with urban district and WL-1 for total watershed WS#5 (278.78 ha) we'e selected as gaging points. The main results gained through applications were summarized as follows. 1. Direct runoff ratio caalculated from a simple separation method for WS#5 WS# 1 was 2O~39%, 38~62%, respectively. 2. Simulations for the runoff estimation were carried out for each watershed using 5 rainfall events, the simulation errors had the range of 2~ 30%, O~ 63% and O 120 minutes for the runoff volume, peak flow and peak time, respectively. 3. The effect of landuse change by urbanization was tested to WS# 1, runoff volume before development was estimated as from tenth to twentieth against after development.

  • PDF

사전재해영향성검토 시 합리적인 홍수유출 모의모형 선정에 관한 연구 (A Study on a Reasonable Choice of Simulation Model for Rainfall-Runoff in the Prior Review System on Disaster Effect)

  • 이정민;윤정란;김영진;진규남;한형근
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.75-82
    • /
    • 2010
  • 도시개발은 불투수면적의 증가를 가져오는 요인이다. 영구저류지는 도시개발 유역의 우수유출을 저감시키는 시설이다. 본 연구에서는 사전재해영향성 제도에서 합리적인 홍수조절방안을 제시하고자 하였다. 먼저 홍수량 계산에서 도달시간 채택에 관한 문제점을 고찰하였다. 홍수유출 모의모형의 적합성 검토는 전원유역과 도시유역에 대하여 수행되었다. 홍수유출 모의모형은 2009년 7월 7일과 9일의 실제 호우 시 측정자료를 통하여 검증되었다. 그 결과, 전원유역과 도시유역에 적합한 모형은 각각 운동파 모형과 SWMM인 것으로 분석되었다. 본 연구에서 수행한 홍수량 산정모형과 합리적인 홍수설계 방안은 국내의 영구저류지 설계 시 기초 자료로 활용될 수 있을 것이다. 수문학적 분석방법은 영구저류지의 합리적인 용량 및 규모산정에 활용될 것으로 사료된다.