• 제목/요약/키워드: runoff modeling

검색결과 274건 처리시간 0.019초

분포형 홍수유출 모델링을 통한 레이더 강우자료의 효과분석 (Discussion for the Effectiveness of Radar Data through Distributed Storm Runoff Modeling)

  • 안소라;장철희;김상호;한명선;김진훈;김성준
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.19-30
    • /
    • 2013
  • This study is to evaluate the use of dual-polarization radar data for storm runoff modeling in Namgang dam (2,293 $km^2$) watershed using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were obtained from Han River Flood Control Office. Even the radar data were overall less than the ground data in areal average, the spatio-temporal pattern between the two data was good showing the coefficient of determination ($R^2$) and bias with 0.97 and 0.84 respectively. For the case of heavy rain, the radar data caught the rain passing through the ground stations. The KIMSTORM was set to $500{\times}500$ m resolution and a total of 21,372 cells (156 rows${\times}$137 columns) for the watershed. Using 28 ground rainfall data, the model was calibrated using discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI) with 0.85, 0.78 and 1.09 respectively. The calibration results by radar rainfall showed $R^2$, ME and VCI were 0.85, 0.79, and 1.04 respectively. The VCI by radar data was enhanced by 5 %.

GIS를 이용한 분산형 강우-유형 모형의 개발 (Distributed Rainfall-Runoff Modeling Using GIS)

  • 김경숙;박종현;윤기준;이상호
    • 대한원격탐사학회지
    • /
    • 제11권2호
    • /
    • pp.1-16
    • /
    • 1995
  • 본 연구에서는 GIS(Geographic Information System) 기법을 수자원모델링 분야에 적용 시키고자 하였다. 강우에 따른 정확한 유출량의 예측은 수자원의 개발이나 관리분야에 있어서 매 우 주요하므로 지금까지 다양한 강우-유출 모형들이 개발되어 왔으며, 이 중 지형적인 특성인자 를 최대한 고려한 분산형 모형은 기존의 모형인 집중형 모형의 단점을 보완할 수 있다는 점에서 그 효용이 인정되어 왔다. 그러나 대유역에 적용할 경우에는 방대한 량의 공간자료를 처리하여야 하므로, 현실적으로 적용하기가 어려웠다. 본 연구에서는 우리의 지형에 맞는 분성형 강우-유출 모형을 개발하였으며, GIS 기법을 활용하 여 입력 자료를 생성, 입력 조작하고 이들을 병합시켜 사용자들이 보다 용이하게 사용할수 있도 록 통합된 시스템을 개발하고자 하였다. 이러한 시스템의 개발에는 실시간(on-line) 운영과 off-line 보정기능을 고려하여야 한다. 본 연구에서는 일차로 데이타베이스, 모형, GIS 그리고 그 래픽 사용자 인터페이스의 기능을 병합시켜 신속한 최종결과는 도출시키는 on-line 운용을 할 수 있는 시스템을 개발하고자 하였다. 소양강 댐 유역의 1990년 9월 홍수를 대상으로 하여 댐 지점 의 유입 수문 곡선을 모의한 결과 사후 모형 보정단계를 거치지 않았음데도 불구하고 관측된 자 료와 비교적 잘 일치하여 실무에의 활용 가능성을 보여주었다.

기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가 (Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model)

  • 최윤석;김경탁;김주훈
    • 한국습지학회지
    • /
    • 제14권3호
    • /
    • pp.385-397
    • /
    • 2012
  • 격자 기반의 물리적 분포형 모형은 유역의 물리적 매개변수와 격자 형식의 공간 및 수문자료를 이용해서 유출해석을 수행한다. 본 연구에서는 격자 기반의 물리적 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)의 실시간 유출해석 모듈인 GRM RT(Real Time)를 이용해서 실시간 유출해석 시스템을 개발하였다. 실시간으로 수신되는 기상레이더 자료를 기상청의 실시간 AWS 자료를 이용하여 보정한 후 유출해석에 적용하며, 수위관측소 자료로부터 생성되는 유량자료를 이용해서 유출모형을 실시간 보정한다. 본 연구에서는 실시간 유출해석 시스템 구축을 위해서 필요한 데이터베이스를 설계 및 구현하였으며, 분포형 모형과 레이더 자료를 이용한 실시간 유출해석 절차를 정립하였다. 또한 개발된 시스템의 성능을 평가하고 실시간 모형보정에 대한 적용성을 평가하였다. 소양강댐 상류에 위치한 내린천 수위관측소 유역을 대상으로 실시간 유출해석 시스템을 적용하고 그 결과를 평가하였다.

SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축 (Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM)

  • 이용진;윤영삼;이남주
    • 한국환경과학회지
    • /
    • 제18권9호
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.

격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석 (Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model)

  • 박인혁;박진혁;허영택
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Modeling Infiltration and Redistribution for Multistorm Runoff Events

  • 유동렬;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.74-77
    • /
    • 2000
  • Infiltration and water flow in the upper soil layer of a deep water table aquifer are modeled for multistorm runoff events. The infiltration process is developed using the sharp wetting front model of Green and Ampt, and the following redistribution process is modeled using the gravity drained rectangular approximation. The Brooks-Corey model [Brooks and Corey, 1966] is adopted to relate the effective soil saturation, the tension head, and the unsaturated hydraulic conductivity Firstly, the infiltration and redistribution model is developed for a single stom runoff event. Then a couple of events combined for multistorm runoff events. In the later case, infiltration rate of the second rainfall is strongly influenced by the length of the rainfall hiatus and soil moisture profile.

  • PDF

공간 분포된 강우를 이용한 유출 해석 (Runoff Analysis using Spatially Distributed Rainfall Data)

  • 이종형;윤석환
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

EPIC Simulation of Water Quality from Land Application of Poultry Litter

  • Yoon, Kwang-Sik
    • 한국농공학회지
    • /
    • 제42권
    • /
    • pp.38-49
    • /
    • 2000
  • Two application rates (9 and 18 t/ha) of poultry litter and a recommended rate of commercial fertilizer were studied to determine their effects on nutrient (N and P) losses in surface and subsurface runoff and loadings in soil layers from conventionally-tilled com by the treatments. The model predicted higher sediment losses than observed data from all treatments. The overpredicted sediment losses resulted in overprediction of organic-N and sediment-P losses in surface runoff. Simulated soluble-P losses in surface runoff were close to observed data, while NO3-N losses in surface runoff were underpredicted from all treatments. Observed NO3-N concentrations in leachate at 1.0-m depth from commercial fertilizer treatment were fairly well predicted. But the concentratins were overpredicted from poultry litter treatments due to high simulation of organic-N mineralization simulated by the model.

  • PDF

Application of QuickBird Satellite Image to Storm Runoff Modeling

  • Kim, Sang-Ho;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.15-20
    • /
    • 2007
  • This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a $1.05km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS-CN and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrologic Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events.

제주도 도심하천 유역의 유출특성 해석 (Characteristics of Runoff on Urban Watershed in Jeju island, Korea)

  • 정우열;양성기;이준호
    • 한국환경과학회지
    • /
    • 제22권5호
    • /
    • pp.555-562
    • /
    • 2013
  • Jeju Island, the heaviest raining area in Korea, is a volcanic Island located at the southernmost of Korea, but most streams are of the dry due to its hydrological/geological characteristics different from those of inland areas. Therefore, there are limitations in applying the results from the mainland to the studies on stream run-off characteristics analysis and water resource analysis of Jeju Island. In this study, the SWAT(soil & water assessment tool) model is used for the Hwabuk stream watershed located east of the downtown to calculate the long-term stream run-off rate, and WMS(watershed modeling system) and HEC-HMS(hydrologic modeling system) models are used to figure out the stream run-off characteristics due to short-term heavy rainfall. As the result of SWAT modelling for the long-term rainfall-runoff model for Hwabuk stream watershed in 2008, 5.66% of the average precipitation of the entire basin was run off, with 3.47% in 2009, 8.12% in 2010, and root mean square error(RMSE) and determination coefficient($R^2$) was 496.9 and 0.87, respectively, with model efficient(ME) of 0.72. From the results of WMS and HEC-HMS models which are short-term rainfall-runoff models, unless there was a preceding rainfall, the runoff occurred only for rainfall of 40mm or greater, and the run-off duration averaged 10~14 hours.